

Protecting Sight. Empowering Lives.™

Cataract in the Adult Eye Preferred Practice Pattern®

© 2016 by the American Academy of Ophthalmology Published by Elsevier Inc. http://dx.doi.org/10.1016/j.ophtha.2016.09.027 ISSN 0161-6420/16 Secretary for Quality of Care Stephen D. McLeod, MD

Academy Staff Jennifer K. Harris, MS Doris Mizuiri Andre Ambrus, MLIS Flora C. Lum, MD

Medical Editor: Susan Garratt

Approved by: Board of Trustees September 9, 2016

Copyright © 2016 American Academy of Ophthalmology® All rights reserved

AMERICAN ACADEMY OF OPHTHALMOLOGY and PREFERRED PRACTICE PATTERN are registered trademarks of the American Academy of Ophthalmology. All other trademarks are the property of their respective owners.

Preferred Practice Pattern® guidelines are developed by the Academy's H. Dunbar Hoskins Jr., MD Center for Quality Eye Care without any external financial support. Authors and reviewers of the guidelines are volunteers and do not receive any financial compensation for their contributions to the documents. The guidelines are externally reviewed by experts and stakeholders before publication.

American Academy of Ophthalmology® P. O. Box 7424 San Francisco, CA 94120-7424 415.561.8500

CATARACT AND ANTERIOR SEGMENT PREFERRED PRACTICE PATTERN® DEVELOPMENT PROCESS AND PARTICIPANTS

The **Cataract and Anterior Segment Preferred Practice Pattern® Panel** members wrote the Cataract in the Adult Eye Preferred Practice Pattern® guidelines ("PPP"). The PPP Panel members discussed and reviewed successive drafts of the document, meeting in person twice and conducting other review by e-mail discussion, to develop a consensus over the final version of the document.

Cataract and Anterior Segment Preferred Practice Pattern Panel 2015–2016

Randall J. Olson, MD, Chair, American Society for Cataract and Refractive Surgery Representative Rosa Braga-Mele, MD, MEd, FRCSC Sherleen H. Chen, MD Kevin M. Miller, MD Roberto Pineda, II, MD, International Society of Refractive Surgery Representative James P. Tweeten, MD David C. Musch, PhD, MPH, Methodologist

We thank our partners, the Cochrane Eyes and Vision US Satellite (CEV@US), for identifying reliable systematic reviews that we cite and discuss in support of the PPP recommendations.

The **Preferred Practice Patterns Committee** members reviewed and discussed the document during a meeting in May 2016. The document was edited in response to the discussion and comments.

Preferred Practice Patterns Committee 2016

Robert S. Feder, MD, Chair Roy S. Chuck, MD, PhD Timothy W. Olsen, MD Randall J. Olson, MD Bruce E. Prum, Jr., MD David K. Wallace, MD, MPH David C. Musch, PhD, MPH, Methodologist

The Cataract in the Adult Eye Preferred Practice Pattern was then sent for review to additional internal and external groups and individuals in June 2016. All those who returned comments were required to provide disclosure of relevant relationships with industry to have their comments considered (indicated with an asterisk below). Members of the Cataract and Anterior Segment Preferred Practice Pattern Panel reviewed and discussed these comments and determined revisions to the document.

Academy Reviewers Association of University Professors of Board of Trustees and Committee of Secretaries* Ophthalmology* Council* Australian Commission on Safety and Quality in General Counsel* Health Care Basic and Clinical Science Course Section 11 Canadian Ophthalmological Society Subcommittee **Consumer Reports Health Choices** European Society of Cataract and Refractive Ophthalmic Technology Assessment Committee Cornea and Anterior Segment Disorders Panel Surgeons Practicing Ophthalmologists Advisory Committee International Society of Refractive Surgery Latin American Association of Surgeons of Cataract for Education and Anterior Segment Invited Reviewers National Eye Institute* AARP National Medical Association* American Academy of Family Physicians National Partnership of Women and Families American College of Surgeons North American Neuro-Ophthalmology Society* American Glaucoma Society* Outpatient Ophthalmic Surgical Society* American Ophthalmological Society* Society for Ambulatory Anesthesia* American Society of Cataract and Refractive Surgery* David R. Hardten, MD* American Uveitis Society Susan M. MacDonald, MD* Association for Research in Vision and Tueng T. Shen, MD Ophthalmology

FINANCIAL DISCLOSURES

In compliance with the Council of Medical Specialty Societies' Code for Interactions with Companies (available at <u>www.cmss.org/codeforinteractions.aspx</u>), relevant relationships with industry are listed. The Academy has Relationship with Industry Procedures to comply with the Code (available at <u>www.aao.org/about-preferred-practice-patterns</u>). A majority (57%) of the members of the Cataract and Anterior Segment Preferred Practice Pattern Panel 2015–2016 had no related financial relationship to disclose.

Cataract and Anterior Segment Preferred Practice Pattern Panel 2015–2016

Rosa Braga-Mele, MD, MEd, FRCSC: Alcon Laboratories, Inc. – Consultant/Advisor, Lecture fees; Allergan – Lecture fees

Sherleen H. Chen, MD: No financial relationships to disclose Kevin M. Miller, MD: Alcon Laboratories, Inc. – Consultant/Advisor, Lecture fees David C. Musch, PhD, MPH: No financial relationships to disclose Randall J. Olson, MD: No financial relationships to disclose Roberto Pineda, II, MD: Beaver-Visitec International, Inc., Novartis Pharmaceuticals Corp. – Consultant/Advisor James P. Tweeten, MD: No financial relationships to disclose

Preferred Practice Patterns Committee 2016

Roy S. Chuck, MD, PhD: No financial relationships to disclose Robert S. Feder, MD: No financial relationships to disclose David C. Musch, PhD, MPH: No financial relationships to disclose Timothy W. Olsen, MD: No financial relationships to disclose Randall J. Olson, MD: No financial relationships to disclose Bruce E. Prum, Jr., MD: No financial relationships to disclose David K. Wallace, MD, MPH: No financial relationships to disclose

Secretary for Quality of Care

Stephen D. McLeod, MD: No financial relationships to disclose

Academy Staff

Andre Ambrus, MLIS: No financial relationships to disclose Susan Garratt: No financial relationships to disclose Jennifer K. Harris, MS: No financial relationships to disclose Flora C. Lum, MD: No financial relationships to disclose Doris Mizuiri: No financial relationships to disclose

The disclosures of relevant relationships to industry of other reviewers of the document from January to August 2016 are available online at <u>www.aao.org/ppp</u>.

TABLE OF CONTENTS

OBJECTIVES OF PREFERRED PRACTICE PATTERN GUIDELINES	P6
METHODS AND KEY TO RATINGS	
HIGHLIGHTED FINDINGS AND RECOMMENDATIONS FOR CARE	
INTRODUCTION	
Disease Definition	
Patient Population	
Clinical Objectives	
BACKGROUND	
Prevalence	
Risk Factors	
Natural History	
Visual Function and Quality of Life	
CARE PROCESS	
Patient Outcome Criteria	
Diagnosis	P13
Evaluation of Visual Impairment	
Ophthalmic Evaluation	
Supplemental Ophthalmic Testing	P15
Management	P16
Prevention	
Nonsurgical Management	P18
Surgical Management	P18
Indications for Surgery	P18
Contraindications to Surgery	
Preoperative Medical Evaluation	P19
Biometry and Intraocular Lens Power Calculation	
Anesthesia	
Infection Prophylaxis	
Toxic Anterior Segment Syndrome	P25
Cataract Surgery Checklist	P26
Surgical Techniques	
Intraocular Lenses	
Optical and Refractive Considerations	
Outcomes	
Complications of Cataract Surgery	
Complications of Intraocular Lenses	
Ocular Comorbidities	
Systemic Comorbidities	
Combined Surgery and Special Circumstances	
Second-Eye Surgery	
Immediate Sequential (Same Day) Bilateral Cataract Surgery	
Discharge from Surgical Facility	
Postoperative Management	
Postoperative Follow-up	
Posterior Capsular Opacification	
Provider and Setting	
Counseling and Referral	
Socioeconomic Considerations	
Utilization of Cataract Surgery in the United States	
Cost of Cataract Surgery in the United States	
Cost-Effectiveness of Cataract Surgery	
Cost Considerations	
Physician Quality Reporting System	
APPENDIX 1. QUALITY OF OPHTHALMIC CARE CORE CRITERIA	P01
APPENDIX 2. INTERNATIONAL STATISTICAL CLASSIFICATION OF DISEASES AND	
RELATED HEALTH PROBLEMS (ICD) CODES	
APPENDIX 3. NUTRITION AND CATARACTS	
APPENDIX 4. WRONG-SITE WRONG-IOL SURGERY CHECKLIST	
APPENDIX 5. LITERATURE SEARCHES FOR THIS PPP	
LIST OF ABBREVIATIONS	
RELATED ACADEMY MATERIALS	
REFERENCES	P74

OBJECTIVES OF PREFERRED PRACTICE PATTERN® GUIDELINES

As a service to its members and the public, the American Academy of Ophthalmology has developed a series of Preferred Practice Pattern® guidelines that **identify characteristics and components of quality eye care.** Appendix 1 describes the core criteria of quality eye care.

The Preferred Practice Pattern® guidelines are based on the best available scientific data as interpreted by panels of knowledgeable health professionals. In some instances, such as when results of carefully conducted clinical trials are available, the data are particularly persuasive and provide clear guidance. In other instances, the panels have to rely on their collective judgment and evaluation of available evidence.

These documents provide guidance for the pattern of practice, not for the care of a particular individual. While they should generally meet the needs of most patients, they cannot possibly best meet the needs of all patients. Adherence to these PPPs will not ensure a successful outcome in every situation. These practice patterns should not be deemed inclusive of all proper methods of care or exclusive of other methods of care reasonably directed at obtaining the best results. It may be necessary to approach different patients' needs in different ways. The physician must make the ultimate judgment about the propriety of the care of a particular patient in light of all of the circumstances presented by that patient. The American Academy of Ophthalmology is available to assist members in resolving ethical dilemmas that arise in the course of ophthalmic practice.

Preferred Practice Pattern® guidelines are not medical standards to be adhered to in all individual situations. The Academy specifically disclaims any and all liability for injury or other damages of any kind, from negligence or otherwise, for any and all claims that may arise out of the use of any recommendations or other information contained herein.

References to certain drugs, instruments, and other products are made for illustrative purposes only and are not intended to constitute an endorsement of such. Such material may include information on applications that are not considered community standard, that reflect indications not included in approved U.S. Food and Drug Administration (FDA) labeling, or that are approved for use only in restricted research settings. The FDA has stated that it is the responsibility of the physician to determine the FDA status of each drug or device he or she wishes to use, and to use them with appropriate patient consent in compliance with applicable law.

Innovation in medicine is essential to ensure the future health of the American public, and the Academy encourages the development of new diagnostic and therapeutic methods that will improve eye care. It is essential to recognize that true medical excellence is achieved only when the patients' needs are the foremost consideration.

All Preferred Practice Pattern® guidelines are reviewed by their parent panel annually or earlier if developments warrant and updated accordingly. To ensure that all PPPs are current, each is valid for 5 years from the "approved by" date unless superseded by a revision. Preferred Practice Pattern guidelines are funded by the Academy without commercial support. Authors and reviewers of PPPs are volunteers and do not receive any financial compensation for their contributions to the documents. The PPPs are externally reviewed by experts and stakeholders, including consumer representatives, before publication. The PPPs are developed in compliance with the Council of Medical Specialty Societies' Code for Interactions with Companies. The Academy has Relationship with Industry Procedures (available at www.aao.org/about-preferred-practice-patterns) to comply with the Code.

Appendix 2 contains the International Statistical Classification of Diseases and Related Health Problems (ICD) codes for the disease entities that this PPP covers. The intended users of the Cataract in the Adult Eye PPP are ophthalmologists.

METHODS AND KEY TO RATINGS

Preferred Practice Pattern guidelines should be clinically relevant and specific enough to provide useful information to practitioners. Where evidence exists to support a recommendation for care, the recommendation should be given an explicit rating that shows the strength of evidence. To accomplish these aims, methods from the Scottish Intercollegiate Guideline Network¹ (SIGN) and the Grading of Recommendations Assessment, Development and Evaluation² (GRADE) group are used. GRADE is a systematic approach to grading the strength of the total body of evidence that is available to support recommendations on a specific clinical management issue. Organizations that have adopted GRADE include SIGN, the World Health Organization, the Agency for Healthcare Research and Policy, and the American College of Physicians.³

- All studies used to form a recommendation for care are graded for strength of evidence individually, and that grade is listed with the study citation.
- To rate individual studies, a scale based on SIGN¹ is used. The definitions and levels of evidence to rate individual studies are as follows:

I++	High-quality meta-analyses, systematic reviews of randomized controlled trials (RCTs), or RCTs with a very low risk of bias
I+	Well-conducted meta-analyses, systematic reviews of RCTs, or RCTs with a low risk of bias
I-	Meta-analyses, systematic reviews of RCTs, or RCTs with a high risk of bias
II++	High-quality systematic reviews of case-control or cohort studies
	High-quality case-control or cohort studies with a very low risk of confounding or bias and a high probability that the relationship is causal
II+	Well-conducted case-control or cohort studies with a low risk of confounding or bias and a moderate probability that the relationship is causal
II-	Case-control or cohort studies with a high risk of confounding or bias and a significant risk that the relationship is not causal
III	Nonanalytic studies (e.g., case reports, case series)

• Recommendations for care are formed based on the body of the evidence. The body of evidence quality ratings are defined by GRADE² as follows:

Good quality	Further research is very unlikely to change our confidence in the estimate of effect
Moderate quality	Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate
Insufficient quality	Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate Any estimate of effect is very uncertain

• Key recommendations for care are defined by GRADE² as follows:

Strong recommendation	Used when the desirable effects of an intervention clearly outweigh the undesirable effects or clearly do not
Discretionary recommendation	Used when the trade-offs are less certain—either because of low-quality evidence or because evidence suggests that desirable and undesirable effects are closely balanced

- The Highlighted Findings and Recommendations for Care section lists points determined by the PPP Panel to be of particular importance to vision and quality of life outcomes.
- All recommendations for care in this PPP were rated using the system described above. Ratings are embedded throughout the PPP main text in italics.
- Literature searches to update the PPP were undertaken in July 2015 in PubMed and the Cochrane databases. Complete details of the literature searches are available in Appendix 5.

HIGHLIGHTED FINDINGS AND RECOMMENDATIONS FOR CARE

Symptomatic cataract is a surgical disease. Dietary intake and nutritional supplements have demonstrated minimal to no effect in the prevention or treatment of cataract. *(III, good quality, strong recommendation)*

The standard of care in cataract surgery in the United States is a small-incision phacoemulsification with foldable intraocular lens (IOL) implantation. It is a standard of care that has withstood the test of time.

Refractive cataract surgery has the potential to reduce a patient's dependence on eyeglasses and contact lenses for distance, intermediate, and near vision.

Intraocular lens technologies and surgical approaches to implanting lenses continue to improve.

Femtosecond laser-assisted cataract surgery (FLACS) increases the circularity and centration of the capsulorrhexis and reduces the amount of ultrasonic energy required to remove a cataract. However, the technology may not yet be cost-effective, and the overall risk profile has not yet been shown to be superior to that of standard phacoemulsification.

The use of topical nonsteroidal anti-inflammatory drugs (NSAIDs) is controversial, with evidence suggesting that NSAIDs only be used for the prevention of cystoid macular edema (CME) in patients with diabetic retinopathy or other high-risk ocular comorbidities.

Increasing evidence demonstrates that intracameral antibiotics reduce the risk of postoperative bacterial endophthalmitis.

Surgeons should recognize and prepare to manage high-risk characteristics that may complicate cataract surgery. New risks may become apparent as new technologies come to market. One example is capsular damage with rapid development of a complicated cataract associated with intravitreal injections.

Toxic anterior segment syndrome (TASS) may be confused with infectious endophthalmitis. However, TASS has an earlier onset, is associated with limbus-to-limbus corneal edema, and responds to corticosteroids.

INTRODUCTION

DISEASE DEFINITION

A cataract is a degradation of the optical quality of the crystalline lens that affects vision. Most cataracts are related to aging. They can occur in one or both eyes.

PATIENT POPULATION

Adults (18 years old and older) with cataracts.

CLINICAL OBJECTIVES

- Identify the presence and characteristics of a cataract
- Assess the impact of the cataract on a patient's visual status and function as well as the effect on quality of life
- Educate the patient about the natural history of cataract and its impact on vision and functional activity. Explain the benefits and risks of surgery as well as other treatment alternatives to enable the patient to make an informed decision about treatment options.
- Establish criteria for a successful treatment outcome with the patient
- Perform cataract surgery when surgery will result in enhanced patient function and when the informed patient elects this option. Timing of surgery should be based on a mutually agreeable time between the patient and surgeon.
- Perform surgery when indicated for management of coexistent ocular disease (e.g. macular degeneration or diabetic retinopathy)
- Provide appropriate postoperative care, visual rehabilitation, and treatment of any complications

BACKGROUND

PREVALENCE

The risk of cataracts increases with each decade of life starting around age 40.⁴ Cataracts are the leading cause of visual impairment among Americans of African, Hispanic/Latino, and European descent and are the leading cause of treatable blindness among Americans of African descent age 40 and older.^{5,6} In the United States, cataracts account for approximately 50% of visual impairment in adults over the age of 40,⁵ affecting 24.4 million Americans,⁴ or about 1 in every 6 people in this age range. In 2010, half of white Americans had cataracts by 75 years of age, and 70% of white Americans, 61% of Hispanic Americans, and 53% of black Americans had cataracts by 80 years of age.⁴ In the United States, the number of people with cataracts is forecasted to double from 24.4 million to about 50 million by the year 2050.⁴ Cataracts are the leading cause of blindness worldwide.⁷

There are several different types of cataracts (e.g., nuclear, cortical, subcapsular [anterior and posterior], and mixed). Each type has its own anatomical location, pathology, and risk factors for development. Several systems are available to classify and grade lens opacities,⁸⁻¹² but variations in grading systems make comparing prevalence rates between studies difficult.¹³

Nuclear cataracts consist of a central opacification or discoloration that interferes with visual function. There are different types of nuclear cataracts, accompanied by either brunescence, opalescence, or both.¹⁴ The degree of brunescence may be a helpful indicator of the hardness of the lens. Nuclear cataracts tend to progress slowly and affect distance vision more than near vision. Nuclear cataracts may induce myopia or a reduction in hyperopia. In advanced cases, the lens becomes brown and opaque.

Cortical cataracts can be central or peripheral and sometimes are best visualized by retroillumination or retinoscopy. They can be spoke-like or nummular in appearance. Patients with this type of cataract

commonly complain of glare. When the entire cortex becomes white and opaque, the cataract is referred to as a mature cortical cataract.

Posterior subcapsular cataracts (PSCs) can cause substantial visual impairment if they involve the axial region of the lens. Posterior subcapsular cataracts are found more often in younger patients than either nuclear or cortical cataracts. Patients often have glare and poor vision in bright light, and near vision is typically more affected than distance due to missis with near accommodation.

Two population-based studies found that of the three types, cataract surgery is most frequently performed on PSCs.^{15,16} In an older population (mean age 79 years) undergoing cataract surgery, the nuclear type is most frequently encountered.¹⁷

Studies have found racial differences in the prevalence of different cataract types.¹⁸⁻²² The risk of cataract (particularly cortical) is higher in women and increases with age in the majority of prevalence studies.^{7,20,23-25}

RISK FACTORS

Numerous potential risk factors have been linked with cataract development and are listed in Table 1. The most common risk factors include diabetes mellitus; long-term use of topical, systemic, intravitreal, inhaled or oral corticosteroids; prior intraocular surgery; and lower level of education achieved.²⁶⁻³⁸

Most studies are observational and strongly suggest an association, but they fail to prove a causative effect because they do not measure exposure to the risk factor in a standardized fashion or, in some cases, do not describe the type of cataract.^{26,39}

Cataract Type	Associated Risk Factor	Type of Study	Risk	
Cortical	Diabetes	Observational ^{7,20,32-34,40-42}	Increased risk	
	Family history	Observational ^{20,43-47}	Increased risk	
	Hypertension	Observational ³⁴	Increased risk	
	lonizing radiation (low and high dose)	Observational ³⁶	Increased risk	
	Myopia (>1 D)	Observational ^{42,48,49}	Increased risk	
	Obesity	Observational ^{34,50,51}	Increased risk	
	Systemic corticosteroid use	Observational ²⁹	Increased risk	
	Ultraviolet-B light exposure	Observational ^{23,42,43,52}	Increased risk	
Nuclear	Diabetes	Observational ^{34,42}	Increased risk	
	Obesity	Observational ⁵³	Increased risk	
	Муоріа	Observational ^{7,20,42,54-57}	Increased risk	
	Family history	Observational ^{43,46,58,59}	Increased risk	
	Hypertension	Observational ⁶⁰	Increased risk if taking topical or systemic beta blockers	
	Prior PPV	Observational ^{38,61,62}	Increased risk	
	Smoking	Observational ^{7,42,48,63-69}	Increased risk	
	Tobacco (smokeless)	Observational ⁷⁰	Increased risk	
	Ultraviolet-B light exposure	Case-control ⁷¹	Increased risk	

TABLE1 FACTORS ASSOCIATED WITH INCREASED RISK OF CATARACTS

Cataract Type	Associated Risk Factor	Type of Study	Risk	
Posterior subcapsular	Inhaled corticosteroid usePopulation-based cross- sectional27Incre age 3Ionizing radiation (low and high dose)Observational36.72Incre age 3ObesityObservational50.53Incre 	Increased risk in patients age ≥49		
		Observational ^{36,72}	Increased risk	
	Obesity	Observational ^{50,53}	Increased risk	
	Ocular trauma	Cross-sectional ⁷³	Increased risk	
	Prior PPV	Observational ³⁸	Increased risk	
	Retinitis pigmentosa	Case series74-76	Increased risk	
	Topical corticosteroid use	Case series77	Increased risk	
	Systemic corticosteroid use	Observational ³¹	Increased risk	
	Муоріа	Observational ^{7,42,54,55,57,78}	Increased risk	
	Hypertension	Observational ^{7,78}	Increased risk	
	Diabetes	Observational ^{7,20,34,40,41}	Increased risk	
	Smoking	Observational ^{68,69}	Increased risk	
	Trauma	Observational ⁷³	Increased risk	
Mixed	Prior PPV	Observational ³⁸	Increased risk	
		Observational ⁷⁰	Increased risk	
	Ultraviolet-B light exposure	Observational ²³	Increased risk	
	Hypertension	Observational ⁷	Increased risk	
	Diabetes	Observational ^{20,40}	Increased risk	
	Aspirin use	Randomized trials ⁷⁹⁻⁸²	No evidence of benefit	
Subtypes not identified in study		Observational ^{20,83}	Increased risk	
		Observational ^{29,84}	Decreased risk	
	Diabetes	Observational ^{33,34}	Increased risk	
	Inhaled corticosteroid use	Case-control ^{28,30}	Increased risk in patients age ≥40	
		Case-control ⁸⁵	Increased risk in patients age ≥65	
		Case-control ⁸⁶	Increased risk in patients age ≥70	
	Nasal corticosteroid use	Case-control ⁸⁷	No increased risk	
	Intravitreal corticosteroids	Case-control ^{88,89}	Increased risk	
		Observational ^{35,72}	Increased risk	
	Smoking	Observational ^{69,90,91}	Increased risk	
	Inactivity	Observational ^{92,93}	Increased risk	
	Lower education	Observational ^{20,40,94,95}	Increased risk	
	Ocular inflammatory disease	Observational ⁹⁶	Increased risk	

TABLE1 FACTORS ASSOCIATED WITH INCREASED RISK OF CATARACTS (CONTINUED)

D = diopter; PPV = pars plana vitrectomy

NATURAL HISTORY

Cataracts are variable and unpredictable. Any portion of the lens can become opaque. With age, the lens increases in thickness and weight. Continued production of lens fibers causes hardening and compression of the nucleus, known as nuclear sclerosis. Subsequently, the lens proteins undergo modification and aggregation, and they develop a yellow-to-brown coloration, which changes the transparency and refractive index of the lens. Nuclear sclerosis and yellowing are considered part of the aging process.

Cataracts typically progress. Once visual acuity and function decline, the natural history progresses with no chance of recovery. In three studies, each using different scales for progression of cataracts, there is convincing evidence that cataracts progress over time. In the Barbados Eye Studies, individuals with pre-existing lens opacities had cumulative 9-year progression rates of 22% for cortical, 18% for nuclear, and 26% for PSC opacities.²⁵ The Melbourne Visual Impairment Project reported cumulative 5-year progression rates of 14% for cortical, 19% for nuclear, and 20% for PSC opacities.⁹⁷ In the Longitudinal Study of Cataract, individuals with pre-existing lens opacities had cumulative 5-year progression rates of 16% for cortical, 46% for nuclear, and 55% for PSC opacities.^{98,99}

VISUAL FUNCTION AND QUALITY OF LIFE

The multiple components of visual function include central near, intermediate, and distance visual acuity; peripheral vision; visual search; binocular vision; depth perception; contrast sensitivity; color perception; dark adaptation; and visual processing speed.¹⁰⁰ Visual function also can be measured in terms of patient-reported functional disability caused by visual impairment.¹⁰¹⁻¹⁰⁵ Many activities of daily living require adequate function of more than one of these visual components.

The treatment outcomes that are the most crucial and relevant to the patient are improved visual function and quality of life. Well-designed observational studies consistently show that cataract surgery has a substantial beneficial impact on vision-dependent functioning. Up to 90% of patients undergoing first-eye cataract surgery note improvement in functional status and satisfaction with vision.¹⁰⁶⁻¹⁰⁹ Several studies report an association between improved visual function after cataract surgery and an improved health-related quality of life.^{103,110-113} Visual function plays an important role in physical performance and well-being,¹¹⁴⁻¹¹⁶ particularly in terms of mobility.^{110,117} The loss of vision in the elderly is associated with a decline in physical and mental function as well as a loss of independence in the activities of daily living.¹¹⁸ Examples include nighttime driving and daytime driving as well as community and home activities. A long-term (10-year) evaluation of patients in the Blue Mountains Study found that cataract surgery patients had a significant improvement in the mental health domain scores from the SF-36 questionnaire.¹¹⁹ Cataract surgery may also help alleviate insomnia.^{120,121}

Visual impairment, such as poor depth perception and low contrast sensitivity, is an important risk factor for falls^{122,123} and hip fractures.^{124,125} In a randomized controlled trial, first-eye cataract surgery reduced the rate of falling and fracture by 34% over a 12-month period.^{110,126} Similar improvement following second-eye surgery has also been confirmed.^{117,127} Visual loss from cataracts and the increased risk of falls are both contributing factors for nursing home placement.¹²⁸ A decrease in visual acuity and contrast sensitivity is associated with driving difficulties.^{100,129-132} Drivers with visually significant cataracts are 2.5 times more likely to have an at-fault motor vehicle crash over a 5-year period compared with drivers without cataracts.¹³³ In a cohort of 277 patients with cataract, those who underwent surgery had half the rate of crash involvement compared with those who did not undergo surgery in a 4- to 6-year follow-up period.^{134,135} One large study that assessed patients' visual function pre- and postoperatively found the largest improvements in "driving during the day," "self-care activities," and "driving during the night."¹³⁶ Studies also show a reduction in mortality after cataract surgery¹³⁷⁻¹³⁹ and evidence that waiting more than 4 months to perform cataract surgery after it is clearly indicated and scheduled can also result in increased vision-related complications, such as falls and accidents.^{140,141}

In summary, numerous studies show that physical function, mental health, emotional well-being, safety, and overall quality of life can be enhanced when visual function is restored by cataract extraction.^{142,143}

Improved visual function as a result of cataract surgery can be characterized by the following:

- Better optically corrected vision
- Better uncorrected vision with reduced eyeglass dependence
- Increased ability to read or do near work
- Reduced glare (glare is a side effect of some intraocular lenses [IOLs])
- Improved ability to function in dim levels of light
- Improved depth perception and binocular vision by elimination of anisometropia and achievement of good functional acuity in both eyes
- Improved color vision
- Improved peripheral vision

Improved physical function as a beneficial outcome of cataract surgery can be characterized by the following:

- Increased ability to perform activities of daily living
- Increased ability to continue or resume an occupation
- Increased mobility (walking, driving)

Improved mental health and emotional well-being as another beneficial outcome of cataract surgery includes the following benefits:

- Improved self-esteem and independence
- Improved injury avoidance
- Better social engagement
- Relief from fear of blindness
- Reduced fear of falling

CARE PROCESS

PATIENT OUTCOME CRITERIA

Outcome criteria can vary for each patient, depending on the patient's needs, lifestyle, and medical condition. In general, outcome criteria include the following:

- Reduction of visual symptoms
- Improvement in visual function
- Achievement of desired refractive outcome
- Improvement in physical function, mental health, and quality of life

DIAGNOSIS

The purpose of the comprehensive evaluation of a patient whose chief complaint might be related to a cataract is to determine the presence of a cataract, confirm that a cataract is a significant factor contributing to the visual impairment and symptoms described by the patient, and identify other ocular or systemic conditions that might contribute to visual impairment.

Evaluation of Visual Impairment

The impact of a cataract on visual function can be subjectively assessed by self-reported functional status or difficulty with vision. However, it is important to recognize that patients may adapt to their visual impairment and may fail to notice functional decline that accompanies the insidious progression of a typical cataract. Visual function may be assessed using tests that measure contrast sensitivity, glare disability, or visual acuity at near and distance. With newer technology, it is also possible to objectively measure higher-order aberrations from cataracts that compromise visual acuity and quality.^{144,145}

There is no single test or measure that adequately describes the effect of a cataract on a patient's visual status or functional ability.¹⁴⁶ Similarly, no single test can properly define the threshold

for performing cataract surgery. The Snellen visual acuity chart is an excellent tool for testing distance refractive error (e.g., myopia, hyperopia, astigmatism) in healthy eyes, and it is widely used clinically. Poor preoperative visual acuity correlates with significant postoperative functional improvement in many patients with cataract.¹⁴⁶ However, testing only at distance with high-contrast letters viewed in low-ambient lighting conditions underestimates the functional problems in common real-life situations. For example, reading (especially in poor-contrast environments), daytime or nighttime glare conditions, halos and starbursts at night, and impaired optical quality causing monocular diplopia and ghosting are all important indicators.¹⁰¹ Because preoperative distance visual acuity alone may be an unreliable predictor of postoperative functional improvement, the decision to recommend cataract surgery should not be made solely on the basis of Snellen visual acuity.^{106,147}

Studies have indicated that measures of functional visual impairment provide valid and reliable information that is not reflected in the measurement of visual acuity alone.^{102,148-150} For example, visual functional status indices such as the Activities of Daily Vision Scale (ADVS) and the Visual Function Index (VF-14) have been shown to better correlate with functional visual improvement after cataract surgery than measurement of Snellen visual acuity.¹⁰¹

Two main categories of validated questionnaires for measuring function exist: those that measure general health status (e.g., Short Form-36,¹⁵¹ Quality of Well-Being Scale¹⁴⁹) and vision-specific measures. Questionnaires that measure general health status are less strongly correlated with improvement following cataract surgery than are vision-specific measures.^{149,152} Examples of vision-specific instruments developed or used for cataract evaluation include the Visual Activities Questionnaire,¹⁵³ the ADVS,¹⁴⁸ the VF-14¹⁰¹ and modified versions (e.g., VF-8R),¹⁵⁴ the National Eye Institute Visual Function Questionnaire (NEI-VFQ),^{155,156} and the Catquest-9SF.¹⁰⁴

These questionnaires have been utilized as research tools to provide a standardized approach to assessing visual function, and they can be analyzed and compared across various time periods and populations. More recently, adaptations of some of these questionnaires for application in other cultures or languages have also been developed.¹⁵⁷⁻¹⁵⁹ Responses to these questionnaires are not intended to be the sole basis for determining the need for surgery. For example, some patients with clinically significant cataract who would experience worthwhile visual gain from surgery may not perceive a functional problem listed on the questionnaire.¹⁶⁰ However, visual function questionnaires can contribute to the overall evaluation of a patient who has a cataract and may aid in the therapeutic decision-making process. At this time, there is no single universally accepted questionnaire in clinical use for assessing functional-vision impairment. The assessment of functional status, which may be performed using a variety of methods, is a pertinent part of the patient's evaluation. Patients with fairly symmetric cataract formation are typically least aware of their visual impairment.

Ophthalmic Evaluation

The comprehensive evaluation (history and physical examination) includes those components of the comprehensive adult medical eye evaluation¹⁶¹ specifically relevant to the diagnosis and treatment of a cataract as listed below.

- Patient history, including an assessment of functional status, pertinent medical conditions, medications currently used, and other risk factors that can affect the surgical plan or outcome of surgery (e.g., immunosuppressive conditions, use of systemic alpha-1 antagonists, diabetes)
- Visual acuity with current correction (the power of the present correction recorded) at distance and, when appropriate, at near
- Measurement of best-corrected distance visual acuity
- Assessment of the degree of anisometropia after refraction
- Glare testing when indicated
- Assessment of pupillary function
- Examination of ocular alignment and motility
- External examination (eyelids, lashes, lacrimal apparatus, orbit)
- Measurement of intraocular pressure (IOP)

- Slit-lamp biomicroscopy of the anterior segment, examination of the lens, vitreous, macula, peripheral retina, and optic nerve through a dilated pupil
- Assessment of relevant aspects of the patient's mental and physical status (i.e., cooperation and ability to lie flat)
- Assessment of any barriers to communication (language or hearing impairment)

Supplemental Ophthalmic Testing

Supplemental preoperative ophthalmic tests are not specific for a cataract but may help to identify both the cause and level of severity of an individual's visual symptoms as well as the extent to which comorbidities may be contributing to these symptoms. In a large majority of patients, the ophthalmologist is able to determine whether the cataract is responsible for the patient's visual loss by comparing slit-lamp biomicroscopy findings with the patient's specific symptoms.

Occasionally, a patient presents with visual symptoms disproportionate to the degree of cataract formation. Visual acuity testing alone does not quantify certain visual symptoms, such as disabilities due to glare and reduced contrast sensitivity.¹⁶²⁻¹⁶⁶ In addition, measurements taken in a darkened examination lane with a high-contrast, brightly illuminated target may substantially underestimate the functional problems experienced under a wide variety of lighting and contrast conditions. Visual acuity can be measured and compared with room lights on and off.

Glare testing determines the degree of visual impairment in the presence of a light source located in the patient's visual field. Cataracts may produce a severe visual disability in brightly lit situations, such as sunny daytime lighting or lighting from oncoming automobile headlamps at night. Visual acuity in some patients with cataracts may be normal or near normal when tested in a darkened examination room, but when these patients are retested together with a source of glare, visual acuity (or contrast sensitivity) may drop significantly.¹⁶⁷ However, significant reduction in visual acuity with glare testing is by no means specific for cataract as the etiology but rather may also be secondary to other conditions, such as ocular surface disease. Accordingly, correlation with slit-lamp/funduscopic examination is required to establish cataract as the etiology. Stray light (or light scatter) can be measured and may be used for the evaluation of glare and indication for cataract surgery.¹⁶⁸

Contrast sensitivity testing measures the patient's ability to detect subtle variations in shading by using figures that vary in contrast, luminance, and spatial frequency and is a more comprehensive and time-consuming measure of visual function than Snellen visual acuity testing. For the patient who complains of visual loss and also has lens changes, contrast sensitivity testing may demonstrate a significant loss of visual function that is not appreciated by Snellen visual acuity testing alone.^{163,164,169,170} Decreased contrast sensitivity (as well as decreased Snellen visual acuity) may occur for a number of reasons, and therefore, this test is not a specific indicator of visual loss due to a cataract. In spite of substantial progress over the past few years, there remains no standard or universally preferred method for testing contrast sensitivity.

Ocular wavefront testing has demonstrated that even relatively mild cataracts may be associated with a significant increase in visual aberrations. For example, the naturally occurring negative spherical aberration of the crystalline lens, which offsets the stable and naturally occurring positive spherical aberration of the cornea, typically changes to positive spherical aberration later in life with cataract formation, leading to a decrease in contrast sensitivity.^{171,172} This may explain the symptoms reported by some older individuals who have a mild lens opacity and reasonably good best-corrected visual acuity (BCVA). Measuring corneal aberrometry might be useful in IOL selection and assist in selecting appropriate advanced technology IOL candidates.¹⁷³

Biomicroscopic and ophthalmoscopic examinations of the macular region do not necessarily predict macular function when the macula is abnormal. Potential acuity testing helps predict the visual acuity following cataract surgery and may provide helpful information in certain situations.^{174,175} Potential acuity tests perform less reliably in patients with cataract who present with visual acuity worse than 20/100.^{174,176-178}

Subjective potential acuity tests include the potential acuity meter, laser interferometer, and scanning laser ophthalmoscope. Each projects an image onto the retina through relatively clear regions of the lens, and the patient is asked to identify the letters or pattern.¹⁷⁹ Newer devices may provide more accurate assessments.¹⁸⁰ Other tests, such as the potential acuity pinhole, require the patient to read a brightly illuminated near card through a trial frame at near.^{174,181,182} The near-card pinhole methods are simpler and less expensive than the technology-dependent potential acuity meter and scanning laser ophthalmoscope. When the preoperative distance acuity is 20/100 or better, the Retinal Acuity Meter may more accurately predict the postoperative visual acuity in the presence of ocular comorbidity.¹⁸¹

An assessment of tear function is also important. (*II+, good quality, strong recommendation*) Reduced tear meniscus and tear breakup time (less than 10 seconds), debris in the tear film, a low basal tear secretion score on Schirmer testing, filaments, or punctate erosions are all indications of tear dysfunction that may compromise the postoperative result.

Electrophysiologic testing (e.g., electroretinography and visual evoked potential) measures the electrical response to presented visual stimuli and indicates potential retinal function in nonverbal patients.

Specular microscopy and corneal pachymetry are used to evaluate patients with known preoperative corneal endothelial disease in an effort to determine whether the cornea is likely to remain clear following cataract surgery. These tests are usually not necessary. However, they may be useful for eyes in which the corneal endothelial function is suspected to be abnormal as a result of endothelial corneal dystrophies, previous ocular surgery, or trauma. Several studies suggest that specular microscopy has relatively low accuracy in predicting corneal clarity following cataract surgery.^{183,184}

Although not routinely necessary, assessment of the corneal contour using topography or tomography may be useful to determine whether irregularities in corneal power and shape are contributing to visual impairment. Additionally, a corneal contour evaluation is helpful in the assessment and management of regular and irregular astigmatism, especially when considering advanced technology IOLs or performing limbal relaxing incisions or astigmatic keratotomy in conjunction with cataract surgery. Additionally, Scheimpflug devices can evaluate posterior corneal astigmatism to aid in toric IOL selection or astigmatism management.¹⁸⁵⁻¹⁸⁸ Keratometry is a simple evaluation that can help assess the degree of surface irregularity (e.g., epithelial basement membrane dystrophy), which can contribute to visual disability.

Optical coherence tomography (OCT)^{189,190} and fluorescein angiography may be helpful prior to cataract surgery to evaluate foveal architecture or to identify the presence of concomitant retinal disease and anterior segment disorders, such as posterior polar cataracts,¹⁹¹ even when the foveal center and immediately surrounding areas appear normal on direct examination.

B-scan ultrasonography is appropriate when a dense cataract or other media opacity precludes adequate visualization of the posterior segment or to detect the presence of an intraocular mass, retinal detachment, or posterior staphyloma. Visual fields, external and fundus photography, and special color-vision testing have not been shown to be of value in routinely evaluating patients before cataract surgery.

MANAGEMENT

Prevention

Preventive measures that impart even a modest decrease in the risk of cataract could have a large public health impact, given that 24.4 million people are affected by cataracts in the United States.⁴

Several studies show a linkage of smoking with nuclear sclerosis and demonstrated a doseresponse effect.^{7,48,63-65,68,69,90,192,193} Smoking is also associated with an increased risk for PSC and, to a lesser degree, cortical cataract..^{20,63} Findings from studies indicate a reduced risk of cataracts and cataract surgery in past smokers compared with current smokers, demonstrating a benefit from smoking cessation.^{64,65,90,91,194} A recent study demonstrates that the risk may persist for decades in heavy smokers.⁹¹ Thus, patients should be warned of this risk and counseled to stop smoking.^{42,91,195} (*II*+, good quality, strong recommendation)

Cumulative lifetime exposure to ultraviolet-B radiation has been associated with lens opacities.^{23,52,71,196,197} Therefore, brimmed hats and ultraviolet-B blocking sunglasses are reasonable precautions to recommend to patients.⁴² (*II-, good quality, strong recommendation*)

A Cochrane review of nine trials involving 112,272 individuals with follow-up ranging from 2.1 to 12 years found no evidence to support high doses of vitamin E, vitamin C, or beta-carotene in preventing the progression or development of cataracts.¹⁹⁸ A recent observational cohort study of men found that high doses of vitamins C and E increased the risk of age-related cataract (ARC).¹⁹⁹ Another study in a cohort of women found an increased risk of ARC with high doses of vitamin C.²⁰⁰ A recent randomized clinical trial found long-term daily supplementation with selenium and/or vitamin E unlikely to have a large beneficial effect on ARC.²⁰¹ Daily supplementation with lutein/zeaxanthin showed no significant effect on rates of cataract surgery or vision loss in the Age-Related Eye Disease Study 2 (AREDS2) trial.²⁰² There is little evidence that long-term use of high-dose antioxidant supplements decreases the progression of ARC, however, a recent twins study suggested that oral vitamin C intake was protective of nuclear sclerosis.²⁰³ Therefore, the evidence to date is contradictory.

The role of multivitamin and mineral supplements in reducing ARC is controversial. In 2006, an Evidence-Based Practice Center systematic review of the literature sponsored by the Agency for Health Research and Quality found no benefit from multivitamin/mineral supplements in preventing cataracts.²⁰⁴ However, a recent systematic review of the literature found evidence supporting the role of multivitamin/mineral supplements in reducing the risk of ARC.²⁰⁵ A randomized trial of multivitamin/mineral supplementation with 9 years of follow-up found fewer nuclear cataracts (34% reduction) but more PSCs (twofold increase) in the group taking supplements.²⁰⁶ A recent large-scale randomized controlled trial of male physicians demonstrated that long-term daily multivitamin use modestly reduced the incidence of nuclear cataract.²⁰⁷ The Age-Related Eye Disease Study (AREDS), a clinic-based cohort prospective study, showed Centrum multivitamin use was associated with decreased risk of nuclear cataract and no increase the risk of nuclear cataract.

Several observational studies demonstrate the benefit of healthy diet in prevention of cataracts.²⁰⁸⁻²¹¹ Appendix 3 summarizes studies of nutrition and cataract.

Long-term increased physical activity and exercise may decrease the risk of cataract, based on two prospective observational cohort studies.^{93,212} Conversely, high inactivity levels or prolonged sitting may be associated with increased cataract formation.^{92,93}

In the literature, the association between cataracts and statins is conflicting. A recent metaanalysis of 14 studies pertaining to statins and cataracts demonstrated a relative protective effect of statins in preventing the progression of cataracts.²¹³ Contrary to this are studies that show an increased risk of cataracts with statin use, none of which were included in the above metaanalysis.²¹⁴⁻²¹⁷ Thus, the studies to date have conflicting results regarding the relationship between statins and cataracts.

Long-term users of inhaled or oral corticosteroids are at higher risk for cataract formation.²⁷⁻³¹ Nasal corticosteroids are less likely to cause progression of cataracts according to a recent comprehensive systematic review of the literature.⁸⁷

Presence of diabetes mellitus,^{7,20,32-34} hypertension,^{34,60,78} obesity,^{34,50,51} and metabolic syndrome (diabetes, hypertension, obesity, and dyslipidemia)²¹⁸⁻²²⁰ have been reported to show an increased risk of cataract in multiple observational studies. Prevention and treatment of these conditions may reduce the risk of cataract.

Lastly, several studies have demonstrated an increased risk of cataract with blunt and penetrating trauma.^{73,221} Therefore, recommending safety eyeglasses in high-risk activities at work or recreation is reasonable. *(III, good quality, strong recommendation)*

Nonsurgical Management

Management of a visually significant cataract is primarily surgical. Nonsurgical management includes counseling patients about cataract-related visual symptoms, providing reassurance about the cause of the visual disability, and prescribing new eyeglasses to correct a lens-induced change in refractive error. Surgery can be deferred in some cases by prescribing mydriatic agents to reduce symptoms associated with small centrally located cataracts or by prescribing contact lenses when uniocular cataract development causes symptomatic anisometropia but before there is a significant degradation in visual acuity.

Currently, there are no pharmacological treatments known to eliminate existing cataracts or retard their progression in humans. Ophthalmologists should advise patients that at this time there is insufficient evidence to support the use of pharmacological treatments for cataract. (III, good quality, strong recommendation)

Patients may reduce the risk of cataract development or progression by reducing exposure to known risk factors, such as through smoking cessation or improving diabetes control.

A physician's advice to quit smoking is an important motivator in a patient's attempt to stop.²²²⁻²²⁵ Cataracts, therefore, give the ophthalmologist an opportunity to discuss both the ocular benefits and general health benefits of smoking cessation.

Patients who are long-term users of oral and inhaled corticosteroids should be informed of the increased risk of cataract formation^{28-31,86,226} (*II+, moderate quality, strong recommendation*) and may wish to discuss alternative medications with their primary care physician. Brimmed hats and ultraviolet-B blocking sunglasses are reasonable precautions to consider, but there is no interventional trial that proves this will reduce the risk of cataract formation.^{42,227}

Surgical Management

The predominant method of cataract surgery in the developed world is sutureless small-incision phacoemulsification with foldable intraocular lens (IOL) implantation.²²⁸ (*I*+, good quality, strong recommendation) In randomized clinical trials, it produces better outcomes than manual extracapsular cataract extraction (ECCE) with incision closure by sutures.²²⁹ In the developing world, ECCE and intracapsular cataract extraction (ICCE) remain popular because of their cost-effectiveness, and sutureless ECCE with IOL performed very well in comparison to phacoemulsification with a foldable IOL in one randomized clinical trial.²³⁰ Extracapsular cataract extraction with optical rehabilitation with aphakic eyeglasses.²²⁹

Indications for Surgery

The primary indication for surgery is visual function that no longer meets the patient's needs and for which cataract surgery provides a reasonable likelihood of improved vision. Other indications for a cataract removal include the following:

- There is clinically significant anisometropia in the presence of a cataract
- The lens opacity interferes with optimal diagnosis or management of posterior segment conditions
- The lens causes inflammation or secondary glaucoma (phacolytic, lens particle, phacoanaphylactic)
- The lens induces or risks angle closure

Contraindications to Surgery

Surgery for a visually impairing cataract should not be performed under the following circumstances:

- Tolerable refractive correction provides vision that meets the patient's needs and desires
- Surgery is not expected to improve visual function, and no other indication for lens removal exists
- The patient cannot safely undergo surgery because of coexisting medical or ocular conditions

- Appropriate postoperative care cannot be arranged
- The patient or patient's surrogate decision maker is unable to give informed consent for nonemergent surgery

Preoperative Medical Evaluation

The ophthalmologist who is to perform the cataract surgery should consider all of the following responsibilities:^{231,232}

- To examine the patient preoperatively (see Ophthalmic Evaluation section)
- To ensure that the documented evaluation accurately reflects the symptoms, findings, and indications for treatment
- To obtain informed consent from the patient or the patient's surrogate decision maker after discussing the risks, benefits, and expected outcomes of surgery, including the anticipated refractive outcome and the patient's surgical experience²³³
- To review the results of the presurgical evaluation with the patient or the patient's surrogate decision maker
- To counsel the patient about target postoperative refractive options, such as bilateral emmetropia, bilateral myopia, or monovision, and assist in choosing an option, such as astigmatism correction or a multifocal IOL, that will work best given the ophthalmic history and patient's desires
- To formulate a plan, including selection of appropriate anesthesia, surgical approach, and IOL design and power
- To formulate a postoperative care plan and inform the patient or the patient's surrogate decision maker of these arrangements (setting of care, care provider)
- To answer the patient's questions about the surgery and care, including associated costs

Ideally, the operating ophthalmologist should perform the preoperative evaluation, because this will allow the surgeon to formulate the surgical plan and establish a relationship with the patient prior to surgery. *(III, good quality, strong recommendation)* Although the ophthalmologist is responsible for the examination and review of the data, certain aspects of data collection may be conducted by another trained individual under the ophthalmologist's supervision and with his or her review.^{231,232}

Patients undergoing cataract surgery should have a preoperative medical evaluation, including history and physical examination with consideration of the risk factors for undergoing the planned anesthesia. *(III, good quality, strong recommendation)* For patients with certain severe systemic diseases (e.g., chronic obstructive pulmonary disease, poorly controlled arterial blood pressure, recent myocardial infarction, unstable angina, poorly controlled congestive heart failure, or poorly controlled diabetes) a preoperative medical evaluation by the patient's primary care physician should be strongly considered.²³⁴

Routine preoperative laboratory testing in association with the history and physical examination is not indicated.²³⁵ (*I*+, good quality, strong recommendation) The Study of Medical Testing for Cataract Surgery demonstrated that routine medical testing did not reduce perioperative morbidity and mortality. Directed testing may be recommended as appropriate for a particular surgical candidate with particular medical problems.^{235,236}

Biometry and Intraocular Lens Power Calculation

Accurate measurement of axial length and central corneal power, combined with an appropriate IOL selection based on a power calculation formula, is the minimal requirement to achieve the targeted postoperative refraction. *(III, good quality, strong recommendation)* A-scan ultrasonography or optical biometry is used to measure axial length. A-scan ultrasonography is performed using either an applanation or immersion technique. In A-scan ultrasonography by applanation, the ultrasound probe compresses the cornea by variable amounts and there is both a variable and artificial shortening of axial length; the accuracy and overall consistency of this method are highly dependent on the skill and experience of the operator.²³⁷⁻²³⁹ When the immersion technique is used, the

ultrasound probe does not come in direct contact with the cornea, making the measurements more consistent and accurate.

Optical biometry is a high-resolution noncontact method for measuring axial length that uses partial coherence interferometry rather than ultrasound. It is significantly more accurate and consistent than contact (applanation) A-scan biometry.^{237,240,241} Optical biometry was initially considered comparable to immersion A-scan biometry, but it has since been shown to produce improved refractive outcomes. The patient's spherical equivalent is also more likely to be closer to the target refraction.²⁴²⁻²⁴⁴ Optical biometry has also been shown to give user-independent results.²⁴⁵ Other advantages over A-scan ultrasonography include ease and speed of automated operation and the ability to measure to the center of the macula when proper fixation is achieved. A shortcoming of optical biometry is that currently it assigns a global refractive index to the entire eye rather than adjusting it according to the specific optical elements (e.g., cornea, aqueous humor, lens, and vitreous humor) through which light passes. In a highly myopic eve measured using an optical biometer, the axial length of the vitreous gel relative to the other structures results in an overestimation of the true axial length, causing an underestimation of IOL power with standard formulas. To compensate for this effect, approaches such as the Wang-Koch adjustment can be applied for eves longer than 25 mm.²⁴⁶ The Wang-Koch adjustment is unreliable in conjunction with the Barrett Universal II formula, or with any of the many specialized formulas, when used to calculate IOL power in eyes with a history of keratorefractive surgery.

Because optical biometry measures the refractive axial length rather than the anatomical axial length, this method is more accurate than standard forms of ultrasound A-scan biometry when the fovea is located on the sloping wall of a posterior staphyloma.²⁴⁷ Additionally, it is easier to use optical biometry than ultrasound when the patient has silicone oil in the posterior segment.^{248,249} Despite recent advances in optical biometry that allow the measurement of axial length through increasingly dense cataracts,²⁵⁰ A-scan biometry may be necessary to measure the axial length in certain cataracts or when patients are unable to fixate properly.^{251,252} The measurement and comparison of axial length for both eyes is advisable, even if surgery is not planned for the other eye.

Formulas for calculating IOL power rely on keratometry to determine the net refractive contribution of the cornea. These measurements can be obtained by either manual or automated keratometry, or by corneal topography. Following keratorefractive surgery, the determination of true central corneal power is particularly challenging (see Cataract Surgery Following Refractive Surgery section). All devices that measure corneal power by standard methods are unable to accurately determine the total central corneal power following keratorefractive surgery to correct myopia because the posterior curvature may be unaltered. The use of standard keratometry in this setting without a compensatory adjustment will typically result in an unanticipated under- or overcorrection.

Recent-generation theoretical IOL-power calculation formulas such as Hoffer Q, Holladay, and SRK/T should be used in the IOL-selection process.²⁵³⁻²⁵⁸ Some newer generation formulas, such as Haigis, Holladay 2, Olsen, and Barrett Universal II incorporate additional measurements such as anterior chamber depth, lens thickness, and horizontal corneal diameter in an attempt to predict more accurately the effective lens position of the IOL to be implanted.²⁵⁹⁻²⁶¹ Theoretical formulas rely on numerical constants that allow the formula to predict the effective lens position within the eye. The Haigis formula uses three separate constants that are highly specific to the individual characteristics of a specific IOL model across its power range. Although the IOL manufacturer supplies lens constants to be used with calculation formulas, these numbers are generally considered to be only a recommendation and may not correspond to the biometry method being used. Optimization of lens constants for a specific IOL based on an individual surgeon's actual refractive outcome is recommended.

The surgeon should consider the patient's individual desires and needs in selecting an appropriate postoperative refractive target. *(III, good quality, strong recommendation)* Several extended-range high-plus and high-minus IOL powers are available. Patients with

high myopia, where very low-power IOLs straddle both sides of plano, may require unique lens constants for plus and minus powers that are quite different than those recommended by the manufacturer.^{262,263} For the patient with extreme hyperopia requiring an IOL power in excess of the available range, piggybacking two posterior chamber IOLs has been used.²⁶⁴ When this is indicated, it is preferable to use lens optics of different materials in different locations rather than inserting both IOLs inside the capsular bag. This reduces the risk of interlenticular (between the IOLs) membrane formation.^{265,266} If implantation of a sulcus piggyback IOL can be delayed until the in-the-bag lens has a stable anterior chamber depth, it may improve refractive accuracy and reduce the incidence of interlenticular opacification. Intraocular lens power calculations for piggybacked IOLs as a primary procedure may be less accurate than for a single IOL because it is difficult to predict the combined effective IOL position.²⁶⁷ Refractive results with piggybacking IOLs have been favorable in two small case series.^{268,269} Sulcus piggyback implantation in the setting of zonular laxity may result in an unexpected hyperopic refractive result if the piggyback lens pushes the lens within the capsular bag posteriorly, thus reducing its effective power.

A corneal relaxing incision can correct small amounts of astigmatism, but for 1.0 diopter (D) or more of preoperative corneal astigmatism, toric IOL implantation should be considered.²⁷⁰⁻²⁷² Most toric lenses are designed for implantation within the capsular bag. Many company-specific online and machine-based calculators are available to calculate the power of the toric component of the optic. They require the input of preoperative keratometry values and the anticipated surgically induced astigmatism. Adding the contribution of the posterior cornea has been shown to improve outcome accuracy.²⁷³⁻²⁷⁵ The final resting location of the IOL within the eye influences the effective power of the toric component of the optic, just as it does for a purely spherical lens.²⁷⁶ Online formulas that calculate the effective lens position of a toric IOL require the user to input the axial length of an eye in addition to keratometry values and surgically induced astigmatism. The spherical power of a toric IOL is calculated in the usual manner.

Most modern IOLs have aspheric optics. These lenses improve mesopic and scotopic contrast sensitivity and visual quality by reducing depth of focus caused by spherical aberration.²⁷⁷⁻²⁸¹ Some surgeons match the asphericity of the IOL to be implanted to the asphericity of the cornea to maximize visual quality under dilated-pupil conditions.²⁸²

Intraocular lens power can be confirmed or refined intraoperatively in the aphakic and pseudophakic states through the use of intraoperative aberrometry.²⁸³ These devices can be used to assist with axis alignment of a toric IOL as well.²⁸⁴ Intraoperative aberrometry can be especially useful in eyes with a history of keratorefractive surgery, such as PRK and LASIK, although it is not as useful following radial keratotomy.²⁸⁵

Anesthesia

Cataract surgery may be performed using a variety of anesthesia techniques that include local (regional) anesthesia (e.g., retrobulbar, peribulbar, sub-Tenons injection, intracameral, and topical) and occasionally general anesthesia. The planned mode of anesthesia should be discussed with the patient so that she or he will know what to expect in terms of pain, discomfort, consciousness level, visual experiences, and complications. The outcomes of cataract surgery measured in terms of visual acuity, visual function, complications, adverse medical events, and patient satisfaction have not been shown to vary significantly between the anesthesia techniques.²⁸⁶⁻²⁹³ Intravenous (IV) sedation is commonly used to complement the anesthesia in order to optimize the patient's surgical experience and cooperation.

Local (regional) and topical anesthesia is generally preferred, with or without sedation/analgesia. General anesthesia may be utilized if needed for patients with medical, psychosocial, or surgical indications. In a review of studies on cataract surgery using local anesthesia, investigators have concluded that a variety of anesthesia strategies for cataract surgery are safe and effective and that they provide good or excellent intraoperative pain control.^{286,289-297} (I++, good quality, strong recommendation)

Anesthesia techniques with needle injections or blunt cannula may be associated with complications such as strabismus, globe perforation, retrobulbar hemorrhage, intravascular or subarachnoid injection, and macular infarction that are not encountered with topical techniques.^{286,290-294} Eyes with posterior staphyloma, or prior scleral buckle, are at increased risk for globe perforation by peri- or retrobulbar injections.²⁹⁸

A Cochrane review of RCTs comparing peribulbar to retrobulbar blocks found no difference in efficacy (in terms of akinesia, anesthesia, or need for supplemental injections) or safety.^{289,296} Conjunctival chemosis was more likely with peribulbar blocks, while lid hematoma was more likely with retrobulbar blocks. There was no difference in the risk for ptosis. The rates of severe local and systemic complications were very low, with one retrobulbar hemorrhage reported in a patient who had a retrobulbar block.

Another Cochrane analysis of RCTs comparing topical to sub-Tenon's anesthesia found greater intraoperative but less postoperative pain at 24 hours with topical anesthesia.²⁹⁹ While statistically significant, the magnitude was not clinically relevant. There was insufficient evidence to draw conclusions about the incidence of surgical complications between the two techniques.

Many patients who have cataract surgery under topical or peribulbar regional anesthesia (especially topical) experience a variety of visual sensations, such as seeing lights, colors, movement of instruments, and the surgeon's hand or fingers. Because 3% to 18% of patients found these visual sensations disturbing, preoperative counseling about this phenomenon makes it less frightening.^{300,301}

Intravenous access is recommended to treat potential adverse events when sedation/analgesic agents are administered.³⁰² (I+, good quality, strong recommendation) However, given the trend toward topical anesthesia and reduction or elimination of intravenous analgesia/sedation, IV access may be unnecessary. Topical anesthetic drops may be supplemented with intracameral lidocaine for increased pain control.³⁰³ Monitoring during administration of anesthesia and surgery generally includes using a heart monitor, pulse oximetry, and measurement of blood pressure and respirations. These should be performed by personnel (other than the operating ophthalmologist) qualified to monitor and manage the patient's systemic status. (III, good quality, strong recommendation) One study of patients receiving peribulbar anesthesia found that under age 60, hypertension, pulmonary disease, renal disease, and a prior or current diagnosis of cancer correlated with the need for intervention by anesthesia personnel, while an abnormal preoperative EKG or presence of diabetes was not predictive of the need for intervention.³⁰⁴ Several studies report their experience using registered nurses^{305,306} or respiratory therapists trained as sedation nurses.³⁰⁷ In these situations, anesthesiologist intervention was required in 2% to 9% of cases.

A review of cataract surgery studies involving local anesthesia found weak evidence for improved pain relief, anxiety control, and patient satisfaction with IV or intramuscular sedation or analgesia and insufficient evidence to recommend one technique over the other.²⁸⁶ (*I*+, good quality, strong recommendation) The evidence was insufficient to determine if any analgesic or sedation regimen was better than any other. The Study of Medical Testing for Cataract Surgery found that patients experienced more postoperative drowsiness and nausea when IV agents were used and that nausea and vomiting increased significantly with the number of agents (opioid, sedative, hypnotic) used.²⁸⁷ Also, excessive use of IV sedatives during cataract surgery was associated with increased risk of an adverse intraoperative medical event and was an even greater risk when both IV opiates and sedatives were used.^{288,308,309} Evidence is mixed on the value of oral anxiolytic medication to reduce the patient's anxiety levels when given before cataract surgery.³⁰⁸⁻³¹²

In summary, given the lack of evidence for a single optimal anesthesia strategy for cataract surgery, the type of anesthesia management should be determined according to the patient's needs, the preference of the patient,³¹³ the anesthesia professionals, and the surgeon. (I+, good quality, strong recommendation)

Infection Prophylaxis

Preventing postoperative infection is very important because of the potentially severe consequences of endophthalmitis. However, controlled studies of endophthalmitis prophylaxis have been difficult to perform due to the low incidence of endophthalmitis, varied practice patterns, inconsistent definitions, and the rapid evolution of surgical techniques. Two concerns are the increasing resistance of *Staphylococcus* species (the most common cause of endophthalmitis) to a broad spectrum of antibiotics, including the latest generation fluoroquinolones, and the occurrence of acute endophthalmitis more than a week after surgery.³¹⁴⁻³¹⁷

Historically, the expected incidence of sporadic endophthalmitis was between 0.5 and 1 case per thousand routine cataract procedures. In 1994, an increased rate of postcataract surgery infections was reported, whereas the incidence of infection after other anterior segment procedures was reported on the decline.³¹⁸⁻³²¹ Several large population studies, however, have shown a more recent steady decline in endophthalmitis risk after cataract surgery.^{322,323} It has been proposed that the period of increased infection rates corresponded to the increased use of clear corneal incisions for cataract surgery, because improperly constructed clear corneal incisions are more prone to postoperative instability, leakage, and a potential influx of microbes than are sclerocorneal incisions.³²⁴⁻³³¹ On the other hand, four large case series found no greater likelihood of infection with corneal versus other types of incisions during this period.³³²⁻³³⁵ Nevertheless, careful watertight incision construction and closure (with or without sutures) is obligatory, irrespective of surgical style, because the incidence of infection increases with wound leak.³³⁶ (II-, moderate quality, strong recommendation) Other factors associated with increased rates of endophthalmitis include intraoperative rupture of the posterior capsule, vitreous loss, prolonged surgical time, immunodeficiency, active blepharitis, lacrimal duct obstruction, inferior incision location, incomplete removal of lenticular cortex, male gender, older age, previous intraocular injections, lower surgical volume, and less experienced surgeons.^{322,333,336-347} Four retrospective studies suggest a greater endophthalmitis incidence with a planned ECCE when compared with cataract surgery by phacoemulsification.³⁴⁷⁻³⁵⁰ However, assuming proper incision closure, there is no strong evidence that the method of cataract surgery is a major factor affecting endophthalmitis risk.

There is also no consistent evidence that any one type of IOL optic material is associated with a higher rate of infection.^{326,340,347,350,351} However, polypropylene loop supports have been associated with a greater chance for infection because it appears that bacterial adherence to polypropylene exceeds that for other materials.^{352,353} As a corollary, antibiotics reduce the tendency for microorganisms to adhere to the surface of IOLs.^{354,355} Also, there may be a greater risk for IOL-related contamination of the anterior chamber when the IOL comes in contact with the ocular surface prior to implantation. One study suggests that when the IOL is folded into an inserting cartridge and is placed within the eye directly through the cartridge, avoiding the ocular surface, the likelihood for intraocular contamination is reduced.³⁵⁶

Although very occasional clusters of infections may be induced by contaminated surgical products,³⁵⁷⁻³⁶² topical drops,^{363,364} or contaminated operating room environments,^{365,366} the patient's periocular flora is the primary source for microbes responsible in most cases of sporadic postoperative infection.³⁶⁷ Prophylactic strategies are commonly used, such as applying topical antibiotic eye drops before surgery, applying 5% povidone iodine to the conjunctival cul de sac, preparing the periocular skin with 10% povidone iodine, careful sterile draping of the eyelid margins and eyelashes, adding antibiotics to the irrigating solution, instilling intracameral antibiotics at the close of surgery, injecting subconjunctival antibiotics, and applying topical antibiotic eye drops after surgery.

Importantly, nonrandomized controlled trials and a prospective trial with the unoperated eye as the control have provided evidence that using topical 5% povidone iodine in the conjunctival cul de sac reduced the bacterial load and the incidence of postoperative infection.³⁶⁸⁻³⁷⁰ Lower concentrations of povidone iodine are less effective in reducing

conjunctival bacterial colony counts.³⁷¹⁻³⁷³ The presence of lidocaine gel prior to povidone iodine instillation appears to diminish its antimicrobial efficacy.³⁷⁴

Although topical antibiotics prior to surgery do decrease the bacterial load on the ocular surface, 1 day was as effective as 3 days of preoperative antibiotics in one randomized study, and topical povidone iodine alone was as effective as povidone iodine combined with preoperative topical antibiotics in another randomized clinical study.³⁷⁵⁻³⁸¹ So, it is unlikely that preoperative topical antibiotics add anything to the effect of appropriately used topical 5% povidone just prior to surgery.

Systemic antibiotics are rarely used; however, certain oral fluoroquinolone antibiotics penetrate the blood/ocular barrier adequately to reach levels above the minimum inhibitory concentrations for many organisms inside the eye, and oral antibiotics that penetrate well into the eye may be used selectively.³⁸²⁻³⁸⁵

There is increasing evidence that supports the use of intraocular antibiotics to reduce the risk of endophthalmitis. The partially masked and randomized European Society of Cataract and Refractive Surgeons (ESCRS) study of the prophylactic effect of intracameral cefuroxime injection at the conclusion of the procedure and/or perioperative levofloxacin eye drops on the incidence of endophthalmitis after phacoemulsification was halted early because of a beneficial effect using intracameral cefuroxime. Based on data from 13,698 patients with complete follow-up records, investigators found that the odds ratio for developing endophthalmitis was 4.59 (95% CI, 1.74–12.08; P=0.002) in the group not receiving intracameral cefuroxime injection.³⁵¹ The incidence of endophthalmitis in the control group was higher than that reported in some studies from U.S. centers. An earlier retrospective study in Sweden also reported efficacy of intracameral cefuroxime in reducing postcataract endophthalmitis, as did a later prospective nonrandomized Swedish study that reported a similar endophthalmitis rate without cefuroxime and half the rate of endophthalmitis with intracameral cefuroxime.^{340,386} Seventeen other retrospective studies have since reported that intracameral injection of cefazolin, cefuroxime, or moxifloxacin have reduced the incidence of postcataract endophthalmitis.^{346,347,350,387-400} One study used serial aqueous taps in cataract patients to determine that a single intracameral bolus of 1 mg of vancomycin achieved aqueous drug levels exceeding the minimum inhibitory concentration for most gram-positive bacteria for longer than 24 hours. However, the use of vancomycin as an endophthalmitis prophylaxis is strongly discouraged based on the recent finding of hemorrhagic occlusive retinal vasculitis (HORV) development after seemingly uncomplicated cataract surgery.⁴⁰¹ Several studies support the safety of intracameral moxifloxacin injection for endophthalmitis prophylaxis, and three retrospective studies suggest efficacy.^{346,347,392,400,402-404} (I-, good quality, strong recommendation) Mixing noncommercially formulated antibiotic solutions for intracameral use carries the risk of dilution and composition errors with potential severe toxicity.⁴⁰⁵⁻⁴¹⁰

Unlike direct intracameral antibiotic injection, there are no corresponding studies to support the efficacy of placing antibiotics in the irrigation bottle, although this remains a common practice.^{411,412} Compared with an intracameral bolus, antibiotic in the infusate has the theoretical disadvantage of achieving less predictable intraocular antibiotic concentration and duration, and the practice should be discouraged.⁴¹³ (*III, moderate quality, strong recommendation*)

Evidence of the benefit of injecting subconjunctival antibiotics at the conclusion of surgery is supported by two retrospective surveys. However, this is associated with risks that include pain, globe perforation, hemorrhage, and intraocular toxicity from subconjunctival leakage through the incision with the potential for macular infarction when aminoglycosides are used.^{342,414,415}

Although the evidence is limited, retrospective studies suggest that topical antibiotic prophylaxis may be effective, ^{336,346} however, it does increase antibiotic resistance.⁴¹⁶ Survey data from 2014 (1147 respondents; 15% response rate) of the American Society for Cataract and Refractive Surgery (ASCRS) members found that topical antibiotic prophylaxis was used by 85% of respondents preoperatively and 97% of respondents postoperatively. However, the increasing use of intracameral antibiotics appears to be a

continuing trend, with 50% reporting routine use in the 2014 survey versus 30% in 2007.⁴¹⁷ In the 2014 survey, 83% of respondents said they would use intracameral antibiotics if an approved product were available.^{344,417} With respect to timing, other studies support the practice of initiating topical antibiotics immediately following surgery rather than waiting until the first postoperative day.^{321,336,418-420}

Topical fourth-generation fluoroquinolones have theoretical advantages of broad-spectrum coverage, bactericidal activity, and improved intraocular penetration, and they were the most frequent topical prophylactic antibiotics used by the ASCRS survey respondents.⁴¹¹ The higher cost of these drugs should be considered in light of the absence of any strong evidence of superiority over less expensive topical or intracameral antibiotics.⁴²¹ Furthermore, one very large study based on 315,246 surgeries did not show a difference in efficacy between topical gatifloxacin, ofloxacin, or polymyxin/trimethoprim. However, the use of topical aminoglycosides was associated with double the rate of postoperative endophthalmitis, suggesting they are not a good choice for prophylaxis.³⁴⁶ This study also found that although topical antibiotics altogether had twice the incidence of postoperative endophthalmitis when compared with topical antibiotics alone, and the use of no antibiotics had four times the incidence when compared with intracameral antibiotic use.

In summary, major risk factors for endophthalmitis include older age, a leaky incision, and iatrogenic communication between the anterior and posterior segment (e.g., posterior capsular or zonular tears). A recent study also suggested that using an IOL insertion device versus folding the lens decreased the risk of postoperative endophthalmitis.⁴²² There is good evidence for the use of a 5% solution of povidone iodine in the conjunctival cul de sac to prevent infection.^{369,423} (II-, moderate quality, strong recommendation)

There is mounting evidence that injecting intracameral antibiotics as a bolus at the conclusion of surgery is an efficacious method of endophthalmitis prophylaxis. The evidence supporting subconjunctival antibiotic prophylaxis is relatively weak. As an alternative to intracameral or subconjunctival injection, topical antibiotic instillation may be more protective when initiated on the day of surgery instead of on the first postoperative day. Due to the lack of sufficiently large prospective clinical trials, and the impracticality of conducting such trials, there is insufficient evidence to recommend a specific antibiotic drug or method of delivery for endophthalmitis prophylaxis. However, increasing evidence supports the role of intracameral antibiotic use.⁴²⁴

In conclusion, the surgeon must ensure that antisepsis of the periocular surface, typically with povidone iodine, is achieved and that all incisions are closed in a watertight fashion at the end of the procedure.³³⁶ (*II-, moderate quality, strong recommendation*) It would appear that antibiotic use on the day of surgery is important rather than waiting until the next day.³³⁶ Specific prophylactic antibiotic strategies in the perioperative period lack sufficient scientific evidence to make a recommendation at this time.

Toxic Anterior Segment Syndrome

Toxic anterior segment syndrome (TASS) is a sterile postoperative inflammatory reaction that typically presents within 12 to 48 hours following surgery and can mimic infectious endophthalmitis. Common clinical findings associated with TASS are diffuse limbus-to-limbus corneal edema, severe anterior chamber cell and flare, fibrin, and hypopyon. Sequelae may include an atonic pupil, secondary glaucoma, and corneal decompensation.⁴²⁵ Toxic anterior segment syndrome usually responds to anti-inflammatory medication, but permanent intraocular damage can occur. However, if there is sufficient suspicion of an infectious etiology, cultures of the anterior chamber and vitreous should be obtained to test for infectious etiologies, and antibiotic treatment should be initiated.⁴²⁶ *Bacillus cereus* infection has been shown to mimic TASS findings early on. However, it will continue to worsen in spite of an early response to topical corticosteroids.⁴²⁷ Toxic anterior segment syndrome typically has an earlier time course than *B. cereus* infection.

Many factors are associated with TASS, but the etiology is often difficult to prove.⁴²⁵ Likely causes include heat-stable gram-negative endotoxins from municipal water supplies, chemical detergent and enzymes used to clean instruments, ointment seepage through clear corneal incisions, injected sterile water, IV solutions, a denatured (autoclaved) ophthalmic viscosurgical device ([OVD], i.e., viscoelastic residue from cannulas), solutions of nonphysiologic pH and osmolality, metal contamination of the IOL, incisional leakage from subconjunctival antibiotic, contaminated silicone oil in the vitreous cavity, ethylene oxide vitrectomy-pack sterilization, and IOL polishing compounds.⁴²⁸⁻⁴³⁴ Two studies question whether residual OVDs removed by enzymatic cleaners are a cause of TASS.^{435,436} The growing use of intracameral antibiotics has resulted in commensurate reports of TASS as a result, often with dilution error the documented cause.⁴⁰⁵⁻⁴⁰⁹

One study reviewed 1276 TASS cases that were reported either by questionnaire (77 centers) or site visit (54 centers) from 2005 to 2009.⁴³⁷ The most common factors associated with TASS were related to inadequate cleaning and sterilization of ophthalmic instruments: inadequate flushing of phacoemulsification and irrigation/aspiration handpieces and inappropriate use of enzymatic cleaners, detergents, and ultrasound baths for cleaning and sterilizing instruments.⁴³⁷ These findings were confirmed in a similar study of 1454 TASS cases.⁴²⁸ A retrospective study of 26,408 consecutive cataract surgeries from a single institution during a 1-year period reported 60 cases of TASS, for an incidence of 0.22%. There were two identifiable clusters, but more than half of the cases were sporadic and unexplained. The visual outcomes were excellent based on 6-month follow-up reported on 40% of the cases.⁴³⁸

Cataract Surgery Checklist

Protocols to minimize the incidence of preventable surgical errors regarding surgical site (e.g., wrong eye) and surgical procedure (e.g., wrong IOL) describe the recommended steps to be taken before and on the day of surgery. The roles and responsibilities for different members of the health care team are delineated.⁴³⁹⁻⁴⁴⁴ The Wrong-Site Wrong-IOL Checklist (see Appendix 4) is an example of how to document in the surgery chart that the appropriate steps were taken to prevent wrong-site and wrong-surgery events. Adherence to presurgical protocols or checklists has resulted in fewer adverse surgery events and should be implemented.^{440,443}

Surgical Techniques

Beyond the skill set needed to perform the steps of the operation, cataract surgery also requires the cognitive skills, judgment, and experience necessary to recognize and respond to unexpected events, problems, and complications that may arise intraoperatively. Only an ophthalmologist has the medical and microsurgical training as part of a comprehensive resident experience needed to perform cataract surgery. *(III, good quality, strong recommendation)*

In developed countries, phacoemulsification is the preferred method to remove a cataract. The 2010 Learning Survey highlighted that many respondents use topical anesthesia with intracameral lidocaine, clear-corneal incisions, and a sutureless technique.⁴⁴⁵

The ideal technical elements of a successful cataract procedure currently include the following:

- A secure, watertight incision that minimizes surgically induced astigmatism or reduces pre-existing corneal astigmatism⁴⁴⁶⁻⁴⁴⁹
- Thorough removal of all nuclear, epinuclear, and cortical material⁴⁵⁰
- Negligible or no trauma to the corneal endothelium, iris, and other ocular tissues^{451,452}
- Preservation of the integrity of the anterior and posterior capsule
- Capsular bag fixation of an appropriate posterior chamber IOL

Intraocular steps that are commonly used during phacoemulsification include the following:

- Construction of an appropriately sized incision that is tight enough to achieve a stable anterior chamber⁴⁵³
- Use of an OVD to protect the corneal endothelium, manipulate tissues, and maintain adequate working space during surgery⁴⁵⁴
- Creation of a capsulorrhexis,⁴⁵⁵ which is a continuous curvilinear or femtosecond lasergenerated capsulotomy and aids in hydrodissection; prevents posterior capsule tears that originate from radial anterior capsule tears; and facilitates the implantation, fixation, and centration of the IOL within the capsular bag. A capsulorrhexis that completely overlaps the IOL edge impedes the development of posterior capsular opacification (PCO) for some IOL designs.⁴⁵⁶
- Hydrodissection,⁴⁵⁷ which reduces zonular stress during phacoemulsification by mobilizing the nucleus and epinucleus, and facilitating thorough cortical aspiration. Hydrodissection also helps to retard PCO.^{458,459}
- Nuclear disassembly and emulsification using techniques such as divide and conquer⁴⁶⁰ or chopping⁴⁶¹ to allow nuclear removal through a capsulorrhexis and small incision⁴⁶²
- Thorough removal of remaining epinucleus and cortex⁴⁵⁰ (polishing the anterior and posterior capsule when appropriate)
- Implantation and centration of a small-incision IOL within the capsular bag, or as dictated by capsular anatomy, secure fixation of the IOL in the ciliary sulcus⁴⁶³ (with or without sutures or capsulorrhexis capture⁴⁶⁴) or anterior chamber
- ◆ Removal of OVD to minimize postoperative IOP elevation⁴⁶⁵
- Assurance of a watertight incision using sutures or a sealant if the incision size and architecture with adequate stromal hydration alone do not produce a secure, self-sealing wound^{328,340,446,466-468}

Incision location, size, and design may depend on several factors, including the patient's orbital anatomy, the type of IOL to be implanted, the role of the incision in astigmatism management, and surgeon preference and experience. For example, varying the incision characteristics and centering it on the steep corneal meridian may reduce pre-existing astigmatism.⁴⁶⁹⁻⁴⁷¹

When feasible, small-incision surgery is generally preferred for several reasons.⁴⁷² (*I*+, *good quality, strong recommendation*) Smaller incisions are amenable to self-sealing wound construction so that fewer or no sutures are needed for secure closure. They are therefore inherently safer in the event of sudden patient movement or a suprachoroidal hemorrhage during surgery, and there are fewer physical restrictions postoperatively. They may be associated with less initial postoperative inflammation.^{473,474} Finally, smaller incisions induce less unwanted astigmatic change than larger incisions^{472,475,479} and result in earlier and greater long-term stability of the refraction.^{480,483}

When required, large-incision manual ECCE or manual small-incision cataract surgery (SICS) may be preferred for certain complicated cataract surgeries, such as those with mature nuclei, weak zonules, or a higher risk of corneal decompensation.⁴⁸⁴⁻⁴⁸⁸

A recent adjunctive tool used in cataract extraction is a femtosecond laser, ³¹¹ which can be used to construct corneal incisions,⁴⁸⁹ create arcuate astigmatism correcting incisions,⁴⁹⁰⁻⁴⁹² perform the anterior capsulotomy, and cleave or soften the nucleus.

Although FLACS is currently gaining popularity, there is still controversy around the relative benefits and disadvantages of the femtosecond laser.⁴⁹³ Femtosecond laser technology has the potential to improve safety, accuracy, and clinical outcomes. However, FLACS adds cost and new financial and clinical challenges.^{494,495} Although the cost can theoretically be passed on to patients under specific insurance exceptions or as a refractive procedure, a financial analysis would be advisable before a practice considers purchasing a femtosecond laser.⁴⁹⁵

Multiple reports document a learning curve when incorporating femtosecond cataract technology into a practice.^{496,497} In addition to increasing surgical time, the eye behaves

differently after laser application. Mild increases in inflammation and pupillary constriction may occur.^{498,499} Subconjunctival hemorrhage is more common in the immediate postoperative period. Also, there may be certain types of cataracts, such as posterior polar or phacomorphic, for which the femtosecond laser should not be used due to higher complication rates, such as posterior capsular rupture.^{500,501} (*II-, moderate quality, strong recommendation*)

The surgeon needs to be aware of many changes necessary in phacoemulsification technique in order to be successful. When dealing with the capsulotomy, the capsule should be pulled centrally to help avoid radial tears.⁵⁰² Two clinical studies have shown an increased risk of anterior capsular tear due to the irregular edge created by a femtosecond capsulorrhexis,^{502,503} whereas two in vitro studies suggest this may not be a problem.^{504,505}

However, more recent FLACS software iterations have minimized irregular edges and outcomes are more predictable.^{506,507} During hydrodissection, the air bubbles should be gently decompressed. If performed too aggressively, rapid hydrodissection could lead to a posterior capsular rupture.^{508,509} Once nuclear material is extracted, removal of cortical material may be slightly more challenging than with traditional phacoemulsification.

Some peer-reviewed studies provide evidence on the relative benefits of femtosecond laser, specifically for refractive-cataract surgery, and these studies generally tend to demonstrate that FLACS can be a safe procedure comparable to traditional phacoemulsification.^{503,510,511}

Several clinical studies indicate that capsulotomies created with a femtosecond laser are significantly more precise in reproducibility than manual continuous curvilinear capsulorrhexis (CCC). This may result in a more stable refractive result with less IOL tilt and decentration compared with manual CCC,⁵¹²⁻⁵¹⁷ and it may play a role in both refractive IOL centration and outcomes.

Several studies indicate that less effective phacoemulsification time and cumulative dissipated energy are needed to emulsify the lens following lens fragmentation by the femtosecond laser.^{518,519}

Some studies show a small but statistically significant decrease in the outer nuclear layer thickening in subclinical macular edema following FLACS compared with conventional phacoemulsification. However, the clinical significance is not clear.^{520,521} In contrast, there is a recent study from Australia that reports a slightly higher trend of cystoid macular edema (CME) in FLACS compared with conventional phacoemulsification that may warrant further study.^{522,523}

Although innovative and exciting, femtosecond laser-assisted refractive-cataract surgery offers some surgical and financial challenges. A systematic review found that available evidence could not evaluate equivalence or superiority of this surgery over standard phacoemulsification.⁵²⁴ In conclusion, there are many nuances, advantages, and disadvantages, and these all need to be reviewed and considered. Femtosecond laser-assisted cataract surgery appears to be a comparably safe and reproducible technology, but further prospective randomized studies are needed to demonstrate the potential clinical utility.

Intraocular Lenses

Intraocular lens implantation is the method of choice to correct aphakia, unless there are specific contraindications.⁵²⁵ Posterior chamber IOL implantation in the capsular bag is the optimal method in most cases.⁵²⁶

Cataract surgeons can choose from a wide variety of posterior chamber IOL styles and materials to find the appropriate lens to match their patients' needs. Intraocular lens optic size, shape, haptic configuration, optic edge design, ⁵²⁷⁻⁵³⁰ optic and haptic materials, ⁵³¹⁻⁵³³ and chromophore content are engineered for a variety of characteristics.

Rigid polymethyl methacrylate (PMMA) posterior chamber IOLs were most frequently used before foldable IOLs. Foldable IOLs are now the most common choice following phacoemulsification because they can be implanted through smaller incisions. Foldable IOLs are classified according to their optic material: silicone, hydrophilic acrylic, hydrophobic acrylic, and collagen/hydroxy ethyl methacrylate [HEMA]-copolymer based. Almost all IOLs have ultraviolet-blocking chromophores. Glistenings are fluid-filled microvacuoles that form within an optic when placed in an aqueous environment. They are observed in many types of IOLs but are most commonly associated with some hydrophobic acrylic IOLs. Recent studies have shown that although glistenings (depending on size) may affect light scatter, they tend not to have an effect on contrast sensitivity or visual acuity.⁵³⁴⁻⁵³⁶ Although the impact of glistenings on postoperative visual function and the potential progression of glistenings has rarely been necessary.⁵³⁷ Each IOL is associated with unique positive and negative attributes with regard to material, design, and insertion system. It is therefore incumbent upon each surgeon to have an understanding of the various properties of each IOL.

When combined with a sharp posterior optic edge and an overlapping capsulorrhexis, silicone and hydrophobic acrylic foldable IOLs are associated with a low incidence of PCO in the early years following implantation.⁵³⁸ All foldable IOL materials are associated with minimal giant-cell foreign-body reaction.⁵³⁹⁻⁵⁴¹ It may be prudent to avoid implanting hydrophilic acrylic IOLs in patients undergoing concomitant or subsequent endothelial keratoplasty or vitrectomy surgery due to the potential calcification of these lenses upon exposure to intracameral/vitreal air or gas.⁵⁴² Foldable IOLs can be inserted with either forceps or with injection devices; in some cases IOLs come preloaded in insertion devices.^{543,544} Insertion devices facilitate consistently reproducible insertion through small incisions while preventing any contact of the lens with debris or microorganisms residing on the patient's ocular surface.³⁵⁶

Noncapsular-bag IOL fixation may at times be necessary due to zonular abnormalities or anterior or posterior capsular tears. The surgeon should have backup IOLs available as a contingency. *(III, good quality, strong recommendation)* Options include implanting either an anterior chamber IOL or a posterior chamber IOL positioned in the ciliary sulcus.^{463,545-548} Suturing of posterior chamber IOL haptics to the iris or sclera may be necessary in the absence of sufficient residual capsular support.^{463,545-548} Certain unique IOL designs, such as accommodating or plate haptic IOLs, require capsular-bag fixation, and the surgeon should reconsider implantation without proper posterior capsular support and use other forms of fixation or an alternative IOL style. Also, current single-piece acrylic IOLs should not be implanted in the ciliary sulcus because of associated risks, such as IOL decentration and posterior iris chafing, which can cause transillumination defects, pigment dispersion, elevated IOP, recurrent hyphema, and inflammation.⁴⁶³

Optimal characteristics of a sulcus-fixated posterior chamber IOL include sufficient overall length, posterior haptic angulation, and the absence of sharp anterior optic edges.⁴⁶³ With an open posterior capsular barrier, silicone IOLs may compromise surgical visibility should silicone oil or expansile gas ever be required.^{549,550} Anticipating a more anterior location of the optic, the sulcus IOL power for the average eye should be decreased by 0.5 D to 1.0 D relative to that calculated for capsular-bag fixation (but decreased less with capsulorrhexis capture of the optic).^{551,552} The latter strategy reduces reliance on adequate haptic length to provide optic centration and stability.⁵⁵³ Because noncapsular bag fixation may increase the potential for optic tilt and decentration, the surgeon should reconsider whether multifocal IOLs or IOLs with higher degrees of negative spherical aberration should be implanted.^{554,555} (*III, insufficient quality, discretionary recommendation*)

Suture fixation of one or both haptics of a posterior chamber IOL to the iris or sclera is an option in the absence of sufficient capsular support.^{463,545-548} Risks include improper anatomic placement and suture breakage or knot unraveling.⁵⁵⁶⁻⁵⁶⁰

Alternatively, intrascleral fixation of an IOL appears to be an effective and safe technique for IOL fixation when lacking capsular support, and studies have found good positioning of the IOL and insignificant tilt over a relatively short period of time.^{561,562} However, long-term studies are lacking.

Effective use of an anterior chamber IOL depends on appropriate IOL design, sizing, and proper placement. Iris deformity, pupil distortion, and physical discomfort may result from

an IOL that is too long, whereas rotation and movement of an IOL that is too short may induce chronic inflammation, CME, and corneal endothelial damage.⁴⁶³ A peripheral iridectomy should be used to prevent the risk of pupillary block associated with an anterior chamber IOL.⁵⁶³ (*III, good quality, strong recommendation*) Multiple studies support the efficacy of all three methods of IOL fixation—anterior chamber, iris sutured, and scleral sutured or intrascleral fixation posterior chamber—in the absence of adequate capsular support.^{463,545-548}

Optical and Refractive Considerations

Spherical IOLs, in which marginal light rays focus proximally relative to paraxial light rays, have positive spherical aberration.

Aspheric IOLs are designed to reduce or eliminate the spherical aberration of the eye. Multiple clinical studies demonstrate a pupil-dependent reduction in ocular spherical aberration with aspheric IOLs, and some studies also reveal varying degrees of superior contrast sensitivity with these IOLs relative to spherical IOLs.^{282,564-576} However, the potential advantages of aspheric IOLs remain controversial, particularly with respect to functional benefit⁵⁷⁷⁻⁵⁷⁹ and depth of focus.^{144,580} The potential advantages and disadvantages can be affected by pupil size,⁵⁸¹ IOL tilt⁵⁸² and decentration,⁵⁵⁴ and whether the spherical aberration of the IOL and the patient's cornea are custom matched.^{583,584}

Between 15% and 29% of cataract patients have more than 1.5 D of keratometric astigmatism.^{585,586} Toric IOLs have been shown to decrease eyeglass dependence compared with nontoric monofocal IOLs.^{587,588} In addition, they may offer better predictability and stability of correction compared with incisional astigmatic keratotomy.⁵⁸⁹⁻⁵⁹¹

For a toric IOL to be effective, the axis and magnitude of corneal or keratometric astigmatism must be accurately measured, and the IOL must be accurately and permanently aligned.⁵⁹² The lenticular contribution to refractive astigmatism will be eliminated with cataract surgery. Toric IOL axis misalignment may reduce the desired refractive effect or may even worsen the overall astigmatism.⁵⁹³ Because toric IOLs do not correct irregular astigmatism, they should not be used in patients who will require a rigid contact lens.⁵⁹⁴ Modified keratometers and aberrometers are available that can be used intraoperatively to help with IOL calculations and toric IOL alignment.^{285,595} An effort should be made to determine the true corneal refractive power, which incorporates both the anterior and posterior corneal power. *(III, good quality, strong recommendation)* Lastly, new technology IOLs, such as toric IOLs, have shown good long-term rotational stability.⁵⁹⁶

Use of presbyopia-correcting IOLs or monovision may improve quality of life by reducing eyeglass dependence after cataract surgery.⁵⁹⁷ For each of these options, patient selection is critical. Certain patient-related factors may be associated with suboptimal postoperative performance and reduced patient satisfaction. Surgeons must understand the individual patient's lifestyle and expectations so that the best IOL is selected. Patients should be informed of the potential compromise in quality of vision associated with these choices.⁵⁹⁸⁻⁶⁰⁰

Monovision involves correction of one eye for distance vision and the fellow eye for intermediate or near vision. The success of monovision depends on interocular blur suppression where the blurred image from one eye does not interfere with the image from the in-focus eye. In one study, when the dominant eye was corrected for distance visual acuity, the overall monovision acceptance rate following cataract and IOL surgery was 90% in patients with cataract who desired independence of correction with eyeglasses.⁶⁰¹ In another study that analyzed modified monovision (-0.75 D anisometropia) versus conventional monovision (-1.75 D or more anisometropia), the authors found that binocular vision in relation to contrast sensitivity and stereopsis was better preserved with modified monovision but near vision was compromised.⁶⁰² In a small nonrandomized study comparing patients who had bilateral multifocal IOLs versus bilateral monofocal IOLs implanted to achieve monovision, there was no statistical difference in bilateral uncorrected distance and near vision or in the satisfaction scores.⁶⁰³ Patients with a history of successful adaptation to monovision with eyeglasses or contacts lenses are particularly well suited for this modality.^{604,605} Such patients may benefit from distance-corrected eyeglasses for

driving at night. In general, patients with latent strabismus, macular disease, or optic nerve disease make poor candidates for monovision, unless they have previously done well with optical correction.

Presbyopia-correcting IOLs can be classified as multifocal, with near and distance elements in the optic of the lens, or accommodative, whereby the lens changes position or shape within the eye.

Multifocal IOLs achieve their effect by dividing incoming light into two or more focal points and can be classified as refractive or diffractive.⁶⁰⁶ A Cochrane systematic review concluded that multifocal IOLs were effective at improving near vision when compared with monofocal IOLs and that unaided distance visual acuity was similar in the two groups.⁶⁰⁷ Optical effects of multifocal IOLs may include reduced contrast sensitivity, halos around point sources of light, multiple images, and glare.⁶⁰⁸ Whether the improvement in near unaided acuity outweighs the optical side effects of multifocal IOLs will vary among patients, with important factors being the motivation to achieve eyeglass independence and adaptation over time.⁶⁰⁹ Patient selection and counseling are particularly important with these IOLs. There may be a symptomatic reduction in the quality of distance vision, particularly if other ocular pathology is present, such as macular pathology or latent strabismus. Therefore, the candidacy of patients with amblyopia or abnormalities of the cornea, optic disc (such as glaucoma), and macula for a multifocal IOL must be carefully considered.⁶⁰⁰ (*III, insufficient quality, discretionary recommendation*)

Multifocal toric IOLs are currently also available to correct astigmatism concurrently while providing a range of vision. When compared with multifocal IOLs with limbal relaxing incisions, they were found to be more predictable and to have good rotational stability.^{610,611}

Multifocal IOLs are available with a lower add for near vision that can help minimize issues of halo and glare.^{612,613}

In an attempt to mimic human accommodation, accommodative (with or without a toric component) presbyopia-correcting IOLs are designed to change position or shape in the eye with accommodative effort. These IOLs have demonstrated varied accommodative potential without the loss of contrast sensitivity inherent in multifocal IOLs.⁶¹⁴⁻⁶¹⁷ A modified monovision technique with the nondominant eye corrected for -0.50 D or -0.75 D is used by some surgeons to improve uncorrected near vision.

Outcomes

Multiple large studies on cataract surgery, including a current Cochrane review, have repeatedly demonstrated favorable outcomes.⁶¹⁸ The 1994 ASCRS National Cataract Database reported that at 3 months postoperatively 86% of all patients had a 20/40 or better BCVA, 57% of patients had 20/25 or better postoperative BCVA, and 75% of patients were within ± 1.0 D of target spherical equivalent.⁶¹⁹ With 5788 responses, the mean visual function index score at 3 months postoperatively was 70% compared with 55% preoperatively. (The score is based on a scale of 0 to 100, with 0 indicating inability to perform any of the activities.) The 1999 European Cataract Outcome Study reported that 89% of patients achieved a postoperative visual acuity of 0.5 D or more (20/40 or better), the average induced astigmatism was 0.59 D, and 86% of patients had an induced astigmatism within ± 1.0 D.⁶²⁰ This study was conducted in 14 countries with up to 40 participating surgeons during the years 1995 to 1999, and it collected operative and follow-up information on a total of 8646 patients, including 3033 patients in 1999.

The American Academy of Ophthalmology National Eyecare Outcomes Network (NEON) database (n=7626) also found similar rates of success, with an improvement in visual acuity in 92% of patients and improvement in VF-14 in over 90% of patients.⁶²¹ Best-corrected visual acuity of 20/40 or better was achieved by 89% of all NEON patients and by 96% of NEON patients who lacked preoperative ocular comorbid conditions.⁶²¹ Seventy-eight percent of patients were within ± 1.0 D of target spherical equivalent. Ninety-five percent of patients reported being satisfied with the results of their surgery. Patients

who were dissatisfied with the results of their surgery were slightly older and more likely to have an accompanying ocular comorbidity. More recently, a large multicenter study in the United Kingdom showed results from cataract surgery of 20/40 or better in 95% of eyes with no ocular comorbidity.⁶²² Several recent papers on clinical outcomes with FLACS report results similar to standard ultrasonic phacoemulsification but with a higher incidence of subconjunctival hemorrhage.⁶²³

In studies of phacoemulsification cataract surgery performed by ophthalmology residents, the reported range of patients with postoperative BCVA of 20/40 or better was 80% to 91%.⁶²⁴⁻⁶²⁹ If eyes with ocular comorbidities are excluded, the reported range of patients with postoperative BCVA of 20/40 or better was 86% to 98%.⁶²⁷⁻⁶³⁰ Good predictive results have also been achieved with toric IOLs in resident phacoemulsification cases.⁶³¹

The Cataract Patient Outcomes Research Team (PORT) study identified independent predictors of greater improvement after surgery: younger age (under 65), less comorbidity, higher cataract symptom score, and worse VF-14 (measure of visual function) score.¹⁴⁷ In several studies, preoperative Snellen visual acuity was found to be unrelated to the likelihood of improvement in symptoms or self-reported visual function after cataract surgery.^{147,150,632} In another study, a prospectively validated model found that predictors of improvement included younger age, a poorer preoperative visual function as measured by the ADVS, and absence of diabetes.⁶³² However, even patients with diabetes and agerelated macular degeneration (AMD) showed significant improvements after cataract surgery, albeit at a lower magnitude than patients without these conditions.⁶³³⁻⁶³⁷ Although these studies have shown greater benefits in younger patients, the improvement in quality of life for those 75 and older is still functionally and statistically significant.

Another study used a validated visual function questionnaire and a variety of psychophysical methods to assess visual improvement in patients with symptomatic cataracts but with preoperative Snellen acuity better than or equal to 20/50.⁶³⁸ Even in eyes with 20/20 or better preoperative Snellen acuity, cataract surgery improved patients' self-reported visual impairment.¹⁵⁰ Neither the preoperative best corrected high-contrast Snellen distance acuity nor change in Snellen acuity predicted the observed improvement in visual function as reflected in the pre- and postoperative questionnaire scores. The strongest preoperative indicators for improved visual function were glare disability tested at low and medium spatial frequencies and the visual function questionnaire score. This suggests that in patients with symptomatic nonadvanced cataract, Snellen visual acuity in isolation does not accurately predict who will benefit from surgery.

Complications of Cataract Surgery

Although numerous complications can occur intraoperatively or postoperatively with cataract surgery, those resulting in permanent loss of vision are rare. Major complications are potentially sight-threatening and include infectious endophthalmitis, TASS, intraoperative suprachoroidal hemorrhage, CME, retinal detachment, persistent corneal edema, IOL dislocation, ptosis, corneal decompensation, diplopia, and blindness.

The Cataract PORT reviewed the incidence of cataract complications from studies published prior to 1992 and with an overall phacoemulsification/manual ECCE case mix of 2:1.⁶³⁹ Six subsequent studies of adverse perioperative outcomes from cataract surgery are summarized in Table 2. In one of these studies, Greenberg et al⁶⁴⁰ reviewed the incidence of complications from cataract surgeries performed at the U.S. Veterans Health Administration system from 2005 to 2007. The most common ocular complications were posterior capsular tear, anterior vitrectomy, or both during surgery (3.5%), and PCO after surgery (4.2%). The rate of CME was 3% and the rate of retained lens fragments was 2%.

Stein et al⁶⁴¹ stratified Medicare beneficiaries who underwent cataract surgery into three cohorts: those who had their first cataract surgery in 1994–1995 (n=57,780), 1999–2000 (n=73,064), or 2005–2006 (n=90,750). The overall rate of severe complications in the 1-year postoperative period was 0.5%; severe complications were defined as endophthalmitis (0.16%), suprachoroidal hemorrhage (0.06%), and retinal detachment (0.26%). The

probability of a severe complication declined over time from 0.6% in the earliest cohort to 0.4% in the most recent group.

A study performed in the United Kingdom reported a 9% complication rate in the overall rate of complications after phacoemulsification.⁶⁴² Of the complications reported, 2% were considered major, including vitreous loss (1%), lens drop (0.1%), iris trauma (1%), retinal detachment (0.2%), and endophthalmitis (0.1%). Other nonmajor complications included wound leak (1%), prolonged corneal edema (0.7%), uveitis (1%), and persistent elevated IOP (0.3%). A 2015 study showed similar results.⁶⁴³

Specific complications following cataract surgery are discussed below.

TABLE 2	COMPLICATION I	RATES FROM SELECTED	D STUDIES OF CATARACT SURGERY	
---------	----------------	---------------------	-------------------------------	--

	Cataract PORT, 1994 ⁶³⁹	Schein et al, 1994 ¹⁰⁶	NEON, 2000 ⁶²¹	Zaidi et al, 2007 ⁶⁴²	Jaycock et al, 2009 ⁶²²	Greenberg et al, 2011 ⁶⁴⁰	Clark et al, 2011 ⁶⁴⁴
Number of cases	*	717	2603	1000	55,567	45,082	65,060
Percent phacoemulsification	65	65	92	100	99.7	95 (approx)†	100
Intraoperative (%)							
Posterior capsular or zonular rupture	3.1	1.95	1.6	1.5	1.92 [‡]	3.5 [§]	NA
Vitreous loss/ anterior vitrectomy or aspiration	0.8	1.39	1.1	1.1	NA	NA	NA
Iris/ciliary body injury	0.7	0.84	0	1.2	0.55	0.1	NA
Loss of nuclear material into vitreous	NA	0.28	<1	0.1	0.18	0.2	0.16
Suprachoroidal hemorrhage	NA	0.14	0	0	0.07	0	NA
Retrobulbar hemorrhage	NA	0	0	0.1	NA	0	NA
Postoperative (%)					(n=16,731)∥		
CME	3.5	3.21	NA	1.2	1.62	3.3	NA
Iris abnormalities	1.3	2.51	NA	NA	0.16	NA	NA
Corneal edema	NA	1.95	<1	0.7	5.18	NA	0.03
Wound leak or rupture	NA	0.84	<1	1.1	0.14	NA	0.06
IOL dislocation, removal, or exchange	1.1	0.28	<1	NA	0.22	0.9	0.19
Endophthalmitis	0.13	0.14	<1	0.1	NA	0.2	0.17
Retinal tear, break, or detachment	0.7	0.14	<1	0.2	NA	0.9	0.37
Visually significant CME	NA	NA	<1	NA	NA	NA	NA
Persistent iritis	NA	NA	1.1	1.1	NA	NA	NA

CME = cystoid macular edema; IOL = intraocular lens; NA = not available; NEON = National Eyecare Outcomes Network; PORT = Cataract Patient Outcomes Research Team

* Number of cases varies depending on the studies included for each complication.

⁺ The study used Current Procedural Terminology codes to identify cases, which do not specify whether cataract surgeries are performed by phacoemulsification or manual extracapsular cataract extraction. A survey⁶⁴⁵ of Veterans Health Administration facilities found that phacoemulsification was performed in approximately 95% of extracapsular cataract surgeries.

[‡] This is a composite figure that includes posterior capsule rupture without vitreous loss, posterior capsule rupture with vitreous loss, and zonule rupture with vitreous loss.

SThis is a composite figure that includes diagnostic codes for posterior capsule tear and procedural codes for anterior vitrectomy.

Postoperative information was not available for all study patients.

Incision complications

An incision that is not watertight can lead to several complications, including postoperative wound leak, hypotony, and endophthalmitis.³³⁶ An incision that is too large will cause leakage of fluid from the wound and destabilize the anterior chamber. An incision that is too tight dramatically increases friction, which increases the heat from the ultrasonic phacoemulsification needle and increases the risk of wound burn. Wound burn (ultrasound stromal thermal damage) occurs at 60° C or higher.⁶⁴⁶ A recent survey identified 419 cases of wound burn, which yielded an incidence of 0.043%.⁶⁴⁷ In a multivariate analysis, factors associated with this problem in order of decreasing significance were lower surgical volume, the surgical technique, and the type of OVD used.⁶⁴⁷ The risk of wound burn related to an OVD varies among different OVDs.⁶⁴⁸ Wound burns can result in wounds that are difficult to close. Surgically induced astigmatism may affect refractive outcomes, particularly with new-technology IOLs.⁶⁴⁹

An incision that is not self-sealing at the end of the surgery will require sutures or adhesive for proper closure. The risk of perioperative wound leak (e.g., risk increased with eye rubbing, poor scleral rigidity) is another consideration for the use of sutures or eye protection postoperatively. Sutures can induce postoperative astigmatism, the magnitude of which is dependent on their location and suture tension.^{471,650} The induced astigmatism is usually reversed upon suture removal.

Iris complications

Damage to the iris can result from iris prolapse due to conditions such as intraoperative floppy iris syndrome (IFIS)^{651,652} or a poorly constructed incision. The causes of surgical iris trauma due to a shallow chamber may include iris aspiration or agitation from the phacoemulsification tip, sphincterotomies, and excessive stretching or manipulation from expansion devices (iris hooks and rings) and instruments. The sequelae of such trauma may include iridodialysis; hyphema; transillumination defects; traumatic mydriasis; and an irregular, atonic, or misshapen pupil. Sphincter necrosis may occur perioperatively as a result of endophthalmitis, TASS, or excessively increased IOP.

Corneal complications

Improper instrument entry into the anterior chamber can lead to Descemet membrane tears or detachment.^{653,654} A small tear may require no attention, since such tears often spontaneously resolve. Larger tears can be repaired by repositioning and tamponading the flap of Descemet membrane with an air bubble. The corneal endothelium is susceptible to damage from any mechanical injury and from prolonged ultrasonic power. It can also be damaged by intraocular solutions that have a nonphysiologic osmolarity or pH, or by chemical insult from toxic contaminants or improperly formulated intraocular solutions and medications.^{425,437} Prolonged elevated IOP can lead to further endothelial decompensation and corneal edema. The surgeon should avoid working close to the cornea and orient the irrigation port away from the corneal endothelium. *(III, good quality, strong recommendation)* Replenishing dispersive OVD during prolonged phacoemulsification or in the presence of several smaller shards of brunescent cataract can also help protect the corneal endothelium.

Prolonged inflammation

There are several potential etiologies for prolonged postsurgical inflammation. Persistent iritis has been associated with retained lens fragments,⁶⁵⁵ previous history of uveitis,⁶⁵⁶ and a subacute infection with *Propionibacterium acnes*.⁶⁵⁷ Other infectious agents, such as fungi, can cause indolent infection and inflammation. Malposition or misplacement of IOLs of specific design may also lead to persistent intraocular inflammation. The surgeon should ensure proper orientation of IOLs to prevent corneal complications. *(III, good quality, strong recommendation)* Insufficient postoperative anti-inflammatory medication may also be a contributory cause.⁶⁵⁸

Endophthalmitis

According to peer-reviewed literature, the incidence of postcataract surgery endophthalmitis ranges from 0.04% to 0.2% in the United States,^{106,318,333,640,659} and from 0.02% to 1.16% elsewhere according to other English-language peer-reviewed literature.^{341,349,385,621,639,641,644,660-664} *Staphylococcus epidermidis* is the most common pathogen.^{660,661} Risk factors for developing endophthalmitis after cataract surgery include posterior capsular rupture (up to 10-fold increase),^{333,336,341,342,664} older age,³⁴¹ relative immunodeficiency,³³³ resident-performed cataract surgery,³⁴² wound leak on the first postoperative day,³³⁶ inferior incision location,³³³ longer length of surgery,⁶⁶⁵ topical anesthesia,⁶⁶⁵ and the use of topical lidocaine gel before povidone iodine.³³³ The absence of intracameral cefuroxime administration in the European endophthalmitis study was associated with a statistically higher rate of postoperative endophthalmitis.³⁵¹

The type and size of incision (clear corneal or sclera) has been implicated as a possible factor in the development of endophthalmitis.³²⁶ However, several articles found no conclusive evidence for an association of clear corneal incision and endophthalmitis.^{333,666,667}

As mentioned earlier in the Infection Prophylaxis section, two pharmacologic interventions have been shown to reduce the rate of postoperative endophthalmitis in prospective randomized clinical trials. They include preparing the eyelids and conjunctival cul de sac with povidone iodine immediately before surgery and injecting cefuroxime into the anterior chamber at the conclusion of surgery. ^{351,368,369,393,668-671} The lack of a commercially available single-dose preparation is the reason quoted most often for not using cefuroxime.^{417,672} Some surgeons prefer moxifloxacin to cefuroxime, but definitive prospective clinical trials are lacking for patients undergoing phacoemulsification.^{400,673,674} However, one recent large retrospective study showed the two to be equally effective.³⁴⁶ A prospective study that was performed in India found a statistically significant reduction in endophthalmitis in a cohort of patients who received intracameral moxifloxacin compared with a control group that did not receive it, but the surgical techniques were considerably different between the two groups.^{675,676} As an additional consideration, bacterial resistance to moxifloxacin is quite different in India and the United States. Financial cost and fear of TASS are often cited as the primary reasons for not using intracameral antibiotics.^{677,678}

Patients who develop endophthalmitis may present with complaints of decreased vision, pain, redness, new floaters, and eyelid edema.^{679,680} Although historically the onset of symptoms was considered to occur during the first postoperative week,⁶⁸¹⁻⁶⁸³ newer studies report a delayed onset of up to 13 days.^{333,684} Patients should be encouraged to call surgeons postoperatively. It is important to minimize any communication barrier between patient and surgeon. Common postoperative findings include conjunctival injection, corneal edema, anterior chamber inflammation, hypopyon, and vitritis.^{679,680} Endophthalmitis must be differentiated from TASS, which has a slightly different time course and requires a completely different treatment.

If endophthalmitis is suspected, referral to a retina specialist is appropriate. If a retina specialist is not available within 24 hours, the anterior or posterior segment should be tapped for evaluation of possible pathogens, followed by an intravitreal injection of antibiotics.⁶⁸¹ (*I-, good quality, strong recommendation*) The Endophthalmitis Vitrectomy Study (EVS) recommended an intravitreal tap plus injection of antibiotics in patients who presented with vision of hand motion or better. Conversely, patients who presented with vision of light perception or worse were more successfully treated by means of pars plana vitrectomy and antibiotics.⁶⁸¹

Posterior capsular tear or zonular rupture

Reported rates of posterior capsular or zonular ruptures range from 2% in uncomplicated cases up to 9% in high-risk patients who underwent pars plana vitrectomy.^{621,622,685-687} Risk factors for posterior capsular tears and vitreous loss include older age, male gender, glaucoma, diabetic retinopathy, brunescent or white cataract, posterior polar cataract, inability to visualize

the posterior segment preoperatively, pseudoexfoliation (exfoliation syndrome), small pupils, axial length greater than 26 mm, use of systemic alpha-1a (systemic tamsulosin) antagonist medication, previous trauma, inability of the patient to lie flat, and resident-performed cataract surgery.^{688,689} Early adopters of femtosecond lasers for lens fragmentation experienced a higher rate of capsular rupture.⁵⁰⁸ However, recent reports have not confirmed these higher rates. Intraoperative risk factors include loose zonules, need for capsular stain, and miosis.⁶⁸⁹

The factors listed above are the known risk factors. However, posterior capsular and zonular complications may occur without any obvious predisposing factors. A discussion with the patient about possible complications and difficulty in assessing risk before cataract surgery may be beneficial.

Retained lens fragments

The incidence of retained lens fragments is 0.18% to 0.28%.^{622,639} If there is vitreous loss with posteriorly dislocated lens fragments, the surgeon should perform an anterior vitrectomy and implant an IOL with an appropriate size and design.⁶⁹⁰ (*III, good quality, strong recommendation*) The use of injected triamcinolone may aid in visualization of residual vitreous.⁶⁹¹ Because of the increased risk of inflammation and elevated IOP, strong consideration should be given to referring patients who have retained nuclear lens fragments to a retina surgeon during the early postoperative period.⁶⁹² Small amounts of cortex can usually be watched. One study found that IOLs placed during primary surgery complicated by vitreous loss required subsequent explantation in a large number of cases. If the proper backup-IOL power, size, or design is unavailable, then the surgeon should consider leaving the eye aphakic at the time of the primary surgery.⁶⁹³ Corneal decompensation is a significant risk when lens fragments are retained in the anterior chamber.⁶⁹⁴

The most appropriate timing of a secondary pars plana vitrectomy is unclear, but the eye should be carefully monitored for complications, such as elevated IOP and inflammation.⁶⁹⁵⁻⁶⁹⁷ (*III, good quality, strong recommendation*)

Retinal detachment

Overall rates of retinal detachment range from 0.26% to 4%.^{641,644,667,698-703} Risk factors for development of retinal detachment after cataract surgery include axial length more than 23 mm (especially high myopia), posterior capsule tear, vitreous loss, younger age, male gender, lattice degeneration, zonular dehiscence, retinal detachment in the fellow eye, and the new onset of a postoperative posterior vitreous detachment.^{667,698-703} In one study, the mean interval between cataract surgery and retinal detachment was 39 months,⁷⁰³ but the increased risk of retinal detachment in pseudophakic eyes may continue for as long as 20 years.⁷⁰⁴ In a single-surgeon prospective case series of 22 years' duration, the risk of retinal detachment after phacoemulsification for female patients with axial length less than 24 mm and age 60 or younger was extremely low.⁷⁰⁵ There was no statistically significant difference in the probability of retinal detachment after ECCE compared with phacoemulsification.⁷⁰⁴

Suprachoroidal hemorrhage

Historically, the incidence of suprachoroidal hemorrhage related to large-incision cataract surgery was reported to be 0.15% to 0.19% and associated with myopia, glaucoma, diabetes, atherosclerotic vascular diseases, hypertension, and prolonged intraoperative hypotony.⁷⁰⁶ Published data on the incidence of suprachoroidal hemorrhage following phacoemulsification are lacking. The risk is probably lower because the surgical duration is shorter. The majority of published studies support the continuation of anticoagulant and antiplatelet therapy during cataract surgery when performed by a skilled surgeon.⁷⁰⁷ (*I-, good quality, strong recommendation*) Anticoagulation with warfarin does not significantly increase the frequency of choroidal hemorrhage, but exposure to warfarin would likely worsen the severity of a hemorrhage once started.⁷⁰⁸

Clinical signs and symptoms of an intraoperative choroidal hemorrhage include sudden pain, scotoma and loss of red reflex, elevated IOP, shallowing of the anterior chamber, and iris prolapse.⁷⁰⁹ Failure to diagnose a hemorrhage and secure the incision promptly can increase the likelihood of sight-threatening complications.

Cystoid macular edema

Clinically significant CME occurs infrequently after routine uncomplicated SICS (1%–3%)^{622,640,642} and often responds well to topical anti-inflammatory medication; however, recalcitrant cases may be associated with permanent impairment of central visual acuity. Risk factors for CME include previous uveitis, posterior capsule rupture with vitreous loss, retained lens material, diabetic retinopathy, venous occlusive disease, epiretinal membrane, prior vitreoretinal surgery, nanophthalmos, retinitis pigmentosa, radiation retinopathy, male gender, older age, and a history of pseudophakic CME in the fellow eye.⁷¹⁰ Anatomic diagnosis is frequently made using OCT, a less invasive technique than fluorescein angiography. Snellen visual acuity may underestimate the impact of CME on visual function.

Because CME is generally associated with postsurgical inflammation, topical antiinflammatory medications are used to prevent CME as well as to treat established CME. There is evidence that NSAIDs, alone or in combination with topical corticosteroids, decrease the likelihood of postoperative CME. There are studies showing benefit to early visual recovery but no level I evidence yet demonstrating a long-term benefit (i.e., 3 months or more).^{395,711-728}

The use of intravitreal anti-angiogenesis agents at the time of cataract surgery for prophylaxis or treatment for select cases of CME is being investigated.⁷²⁹ In one case-control study, eyes with diabetic macular edema (DME) were randomized to receive intravitreal bevacizumab. Injections at 1 and 3 months after surgery showed a significant decrease in retinal thickness compared with a control group.⁷³⁰ In another study of patients with stable diabetic retinopathy without macular edema, injections of ranibizumab reduced the incidence of postoperative CME in the study group.⁷³¹

At present, there is no firmly established protocol for preventing postsurgical CME. Aside from retinitis pigmentosa, there are no known genetic predispositions. The perioperative prophylactic use of NSAIDs for prevention of CME has been advocated for high-risk eyes based on a number of studies.^{710,732} Administration of NSAIDs before and immediately after surgery may hasten the recovery of vision in the first few weeks following surgery. However, there is no level I evidence that visual outcome is improved by the routine use of prophylactic NSAIDs at 3 months or more after cataract surgery.⁷²⁵ (*II+, moderate quality, strong recommendation*) Anti-vascular endothelial growth factors and intravitreal corticosteroids may be useful, especially in diabetics, when topical medications fail or produce limited results.^{733,734}

Intraocular pressure

Many eyes may have a recognized tendency for transient elevation of IOP during the early postoperative period. Although this rarely causes permanent injury, acute postoperative IOP elevation can induce pain, microcystic corneal edema, and nausea. Some eyes may be more susceptible to optic nerve damage or retinal vascular occlusion. The likelihood for IOP elevation increases if excess amounts of the OVD remain in the eye at the conclusion of surgery. Thorough removal of OVD is recommended, since residual OVD remaining in the eye is a likely cause of IOP elevation.⁷³⁵ Dispersive OVDs are more likely than cohesive OVDs to be retained in the eye because they adhere to intraocular structures such as the cornea, iris, and IOL. The optimal pharmacological regimen for preventing an immediate postoperative IOP spike is unclear. It appears that topical aqueous suppressants and intracameral carbachol are beneficial.⁷³⁶⁻⁷⁵⁴ Topical corticosteroid use may elevate IOP in eyes that are "steroid responders."⁷⁵⁵ Difluprednate 0.05% is more likely to elevate IOP than prednisolone acetate 1%, and steroid-induced pressure elevation is more likely to occur in patients who are younger, highly myopic, or have glaucoma or pseudoexfoliation.⁷⁵⁶⁻⁷³⁸ Corticosteroid cessation usually results in a reduction of the IOP to

normal levels, and the IOP should be monitored in patients treated with postoperative corticosteroid medication.⁷⁵⁵ (II-, good quality, strong recommendation)

Complications of Intraocular Lenses

Complications specific to the IOL occur infrequently but vary depending on the design and material of the particular IOL. In the ASCRS/ESCRS registry, the most common reasons for explantation of foldable IOLs include dislocation or decentration, glare or optical aberrations, incorrect power, and opacification.⁷⁵⁹ Multifocal implants, in particular, are most often explanted because of "waxy" vision (patient-described vision as though looking through wax paper), glare, halos, other dysphotopsias, and blurred vision that cannot be corrected optically.⁷⁶⁰ Intraocular lenses may also be damaged during implantation, and intraoperative lens exchange may be necessary.

Posterior chamber IOL decentration can result from damaged haptics, zonular dialysis, anterior or posterior capsular tears, asymmetric capsulorrhexis, asymmetric capsular contraction and fibrosis, and asymmetric placement of the haptics with one in the ciliary sulcus and the other in the capsular bag. A malpositioned posterior chamber IOL can cause significant visual complaints, including edge glare, higher-order aberrations, or IOL inflammation associated with uveal irritation, such as iris chafing. Iris chafing and secondary glaucoma is common with malpositioned single-piece acrylic IOLs and any lens that is placed upside down.⁴⁶³

Dislocation and decentration have been reported with virtually all IOL materials and models, including both one- and three-piece designs.⁷⁵⁹ This complication is seen most commonly when IOLs are not placed symmetrically within the capsular bag or when an IOL is placed without an intact capsulorrhexis. The major predisposing factors for IOL subluxation in one study were secondary implantation, posterior capsular rupture, and mature cataracts.⁷⁶¹ Plate haptic silicone IOLs can dislocate posteriorly following neodymium: yttrium-aluminum-garnet (Nd:YAG) laser capsulotomy and, rarely, spontaneously from capsular contraction.⁷⁶² The problem usually occurs many years after surgery and may happen even if large fixation holes are present on the haptics.⁷⁶³ Delayed in-the-bag spontaneous posterior IOL dislocation is associated with zonular insufficiency, such as with pseudoexfoliation (exfoliation syndrome), prior vitreoretinal surgery, or a history of trauma.⁷⁶⁴⁻⁷⁶⁶ The onset was delayed and occurred on an average of 8.5 years following uncomplicated cataract surgery in a study of 86 consecutive cases.⁷⁶⁶ Spontaneous bag-IOL dislocation can occur with all IOL materials, including PMMA, silicone, and hydrophobic acrylic, as well as with both one-piece and three-piece IOL designs.⁷⁶⁶ There is no evidence that the implantation of a capsule tension ring reduces the risk of late dislocation of the capsular bag.^{767,768}

Glare or optical aberrations are a common reason for lens explantation. The term *dysphotopsia* has been used to describe a variety of unwanted visual phenomena encountered by pseudophakic patients.^{769,770} Positive dysphotopsias may include halos, ghost images, starbursts, and arcs, rings, or flashes of light that may ultimately interfere with visual function. The most common negative dysphotopsia is manifested as a dark crescent or curved shadow that can appear similar to a scotoma or "horse blinder" in the peripheral temporal field of vision.⁷⁷¹⁻⁷⁷³ Initially, positive and negative dysphotopsias were commonly reported with high-refractive-index hydrophobic acrylic IOLs with reflective square edges. However, they have since been reported with many different IOL materials and designs, including silicone and hydrophilic acrylic IOLs.^{528,774-777} Certain optic design characteristics such as a square peripheral edge, flat anterior surface, smaller optic diameter, and multifocality are more likely to result in unwanted optical images.^{771,775,778,779} A large gap between the posterior iris and the anterior lens surface appears to increase the incidence of temporal shadows.⁷⁸⁰ Complications such as IOL opacification, cracked or damaged optics, and IOL decentration may also cause dysphotopsias.

Dysphotopsias decline in prevalence and severity with the passage of time. In one study, the incidence of negative dysphotopsias was 15% on the first postoperative day, whereas 1 year after surgery, with no intervention, 3% of patients reported negative dysphotopsias.⁷⁷³

Implantation of a piggyback IOL or reverse optic capture (placing the optic anterior to the capsulorrhexis) appears to reduce the symptoms of negative dysphotopsia.⁷⁸¹ Although controversial, scleral or iris suture fixation of the haptics of a lens so that it sits more anteriorly in the posterior chamber may help.⁷⁸² Negative dysphotopsia may also be induced at the interface of the capsulorrhexis and the anterior surface of the IOL, suggesting that a shadow of the anterior capsulotomy edge is projected onto the nasal peripheral retina.⁷⁸¹

Incorrect IOL power may lead to explantation in some cases. It is not possible to predict precisely the final axial position of an implanted IOL. An unwanted refractive result or "surprise" is therefore possible. The risk is greater with inaccurate keratometry or axial length measurements, which may occur with uncooperative patients, postrefractive surgery eyes, and atypical anatomic variations such as a staphyloma (see Biometry and Intraocular Lens Power Calculation section and sections that discuss cataract surgery following prior keratorefractive surgery). Incorrect IOL labeling or mistakenly implanting the wrong IOL may result in an unwanted refractive surprise. Finally, surgical factors that can affect the effective lens position include retained OVD in the bag, capsular block, improper haptic or optic placement, capsulorrhexis diameter, and inversion of the IOL.

When an unacceptable or intolerable refractive error results following IOL implantation, the risks of surgical intervention must be weighed against the alternatives of eyeglass or contact lens correction. *(III, good quality, strong recommendation)* Surgical alternatives to IOL exchange include keratorefractive surgery and secondary ciliary sulcus implantation of a piggyback IOL.

The incidence of IOL opacification or calcification appears to be decreasing according to the most recent survey of IOL explantation.⁷⁵⁹ Although IOL calcification was reported with earlier hydrophilic acrylic IOLs, newer hydrophilic acrylic IOLs have been used widely in Europe with a minimal incidence of calcification.⁷⁸³⁻⁷⁸⁷ Opacification of hydrophilic acrylic IOLs may be misdiagnosed as a clouding of the lens capsule or vitreous, leading to unnecessary surgical intervention.⁷⁸⁸ Opacification of silicone IOL optics due to calcium deposits following Nd:YAG laser capsulotomy in eyes with asteroid hyalosis has been reported.^{789,790} For this reason, it may be prudent to avoid silicone IOL implantation in these patients. Occasionally, IOLs must be explanted because of intolerable glistenings.⁵³⁷

The complication of interpseudophakic opacification can occur when lens epithelial cells migrate in between the optics of two piggybacked IOLs (especially two hydrophobic acrylic IOLs) that have both been implanted within the capsular bag.^{265,266} This dense fibrocellular material is difficult to remove and may require explanation of both IOLs.

This problem has not been reported when a silicone piggyback IOL is implanted in the ciliary sulcus following bag placement of the initial acrylic IOL, unlike when both IOLs are placed within the capsular bag.

As noted earlier, implantation of single-piece acrylic IOLs in the ciliary sulcus is associated with pigment dispersion, iris transillumination defects, elevated IOP, and recurrent inflammation or hemorrhage.⁴⁶³ Malpositioned anterior chamber IOLs may result from improper sizing, iris tuck following implantation, or rotation of a haptic through a peripheral iridectomy. Excessive anterior chamber IOL mobility can lead to corneal endothelial decompensation.

Some complications of foldable IOLs are unique to a specific type of material or lens design. For instance, mixing a blue-light filtering IOL in one eye with a clear IOL in the other may result in a perceived color difference.⁷⁹¹ Hydrophilic acrylic IOLs may calcify if subsequent air or gas tamponade is necessary, such as in Descemet stripping endothelial keratoplasty (DSEK) or Descemet membrane endothelial keratoplasty (DMEK).^{542,792-794} In eyes at risk for corneal endothelial decompensation, it is prudent to choose another lens material. Silicone oil adheres to IOLs made from silicone more than to lenses made from other materials.⁷⁹⁵ As a result, it is best to avoid implanting silicone lenses in any eye at risk for subsequent silicone oil injection.⁷⁹⁶ Pseudo-accommodative lenses with flexible hinges are at risk of tilting or of a "Z syndrome" if the capsular bag is too small at the time

of implantation or it contracts aggressively following surgery.⁷⁹⁷⁻⁷⁹⁹ Anterior capsule polishing and capsule tension ring implantation may reduce the incidence of this problem. Finally, toric IOLs may rotate shortly after implantation. Silicone plate-haptic toric lenses with a short overall dimension had a high initial rate of postoperative malpositions, but subsequent lengthening of the haptic dimension on lower-power models largely solved this problem.⁸⁰⁰ Late rotationally stable at the time of implantation, although malpositions are seen occasionally.⁸⁰² Improper positioning at the time of surgery, high myopia, anterior capsule polishing, retained OVD, and shifts in postoperative corneal astigmatism account for most cases of misalignment.⁸⁰³ Reoperation to reorient a toric optic on axis usually remedies this problem.⁸⁰⁴

Ocular Comorbidities

Preoperative ocular comorbidities may adversely affect the outcome of cataract surgery.^{632,805,806} Many comorbid conditions are associated with the potential for reduced improvement in visual function or BCVA,⁸⁰⁷⁻⁸⁰⁹ and the patient should be informed and counseled prior to surgery. *(III, good quality, strong recommendation)* This is particularly true if the patient is electing to receive a refractive- or presbyopia-correcting IOL. Comorbid conditions found in patients with cataracts and the special considerations associated with these conditions are listed in Table 3.

TABLE 3 SELECTED OCULAR COMORBIDITIES

Comorbidity	Special Considerations (aside from reduced visual potential) • Reduced visual potential				
Amblyopia					
Age-related macular degeneration ⁸¹⁰⁻⁸¹²	Reduced visual potentialUnrecognized preoperative exudative disease				
Diabetic retinopathy ⁸¹³⁻⁸¹⁷	 Unrecognized retinopathy Progression of existing retinopathy CSME Poorly dilating postoperative pupil Neovascularization of the iris, neovascularization of the angle, and neovascular glaucoma 				
Epiretinal membrane ^{710,818}	Reduced visual potentialCME				
Fuchs corneal endothelial dystrophy ⁸¹⁹	 Reduced visualization during surgery Prolonged postoperative corneal edema Pseudophakic bullous keratopathy Reduced visual potential 				
Glaucoma ⁸²⁰⁻⁸²⁵	Elevated postoperative IOPReduced function of prior filtering surgery				
Pseudoexfoliation (exfoliation syndrome) ⁸²⁶⁻⁸³²	 Intraoperative miosis Zonular laxity or instability Vitreous loss Retained nuclear fragments Elevated postoperative IOP Accelerated PCO Anterior capsulorrhexis contraction IOL tilt and decentration Late dislocation of IOL or of bag-IOL complex 				
Retinopathy of prematurity ⁸³³	 Amblyopia Intraoperative miosis Traction retinal detachment Loose zonules 				

Comorbidity	Special Considerations (aside from reduced visual potential)
Strabismus	Amblyopia
	 Postoperative diplopia
Uveitis ⁸³⁴⁻⁸³⁹	Posterior synechiae
	Weakened zonules
	 Protein and cellular deposits on the lens implant
	• CME
	 Secondary glaucoma
	 Prolonged postoperative inflammation

TABLE 3 SELECTED OCULAR COMORBIDITIES (CONTINUED)

CME = cystoid macular edema; CSME = clinically significant macular edema; IOL = intraocular lens; IOP = intraocular pressure; PCO = posterior capsule opacification

The presence and extent of AMD may be defined preoperatively through the use of diagnostic instrumentation such as OCT, fluorescein angiography, and potential acuity instruments, which can assist in establishing realistic expectations. There is increasing evidence that the risk for worsening of pre-existing AMD following cataract surgery is unlikely when compared with natural history.⁸⁴⁰⁻⁸⁴³

The status of coexisting diabetic retinopathy, particularly macular edema, may be evaluated using OCT, thereby directing a more vigorous approach to preoperative, intraoperative, and postoperative medical treatment, including the use of intravitreal injections.^{730,731,844-849} Studies of uncomplicated phacoemulsification do not show the significantly increased risk for progression of diabetic retinopathy reported after ECCE and ICCE.⁸⁵⁰ Cataract surgery does not appear to increase the risk of progression of adequately treated proliferative diabetic retinopathy or macular edema.^{813,851} However, patients with pre-existing DME or more severe retinopathy are at increased risk for the development or progression of DME after cataract surgery.^{710,850}

Because of the risk of corneal decompensation in the presence of corneal endotheliopathy, the surgeon may consider using retentive OVDs along with optimizing machine parameters and surgical techniques that reduce cumulative ultrasound time and endothelial trauma.^{852,853} When selecting the IOL power, the potential hyperopic shift with endothelial replacement surgery should be considered.⁸⁵⁴

Pseudoexfoliation (exfoliation syndrome) is commonly associated with a small pupil and weak zonules, which increases the risk of capsular rupture and retained nuclear fragments.⁸³⁰ A preoperative anterior chamber depth from the ocular surface of less than 2.5 mm is indicative of zonular weakness and increases the risk of complications almost fivefold.⁸²⁶ Because of the risk of late bag-IOL dislocation in these patients, larger capsulorrhexis, capsule polishing, and Nd:YAG laser anterior capsule relaxing incisions may be considered to prevent or treat anterior capsule contraction.^{766,767,855}

The optimal timing of cataract surgery in the presence of uveitis is a function of many factors.^{856,857} Inflammation should be inactive or at its best level of control possible, generally for 3 or more months prior to elective surgery.^{838,858,859} Topical and/or periocular, intraocular, and systemic anti-inflammatory medications should be started prior to surgery. *(III, good quality, strong recommendation)* They are then used more frequently and for longer durations following surgery. Intravitreal, periocular, or systemic administration of anti-inflammatory medication may also be considered.⁸⁶⁰

In addition to ocular comorbidities, other characteristics of the patient or eye may be associated with a higher risk for intraoperative and postoperative complications. High-risk characteristics include a history of previous eye surgery, special types of cataracts, very large and very small eyes, deeply set eyes, small pupils or posterior synechiae, scarred or cloudy corneas, weak or absent zonules, prior ocular trauma, and the systemic use of alpha-1a antagonists. Each set of circumstances poses unique challenges (see Table 4). As with ocular comorbidities, patients with high-risk characteristics should be informed about the specific impact of their condition on the expected course and outcome of surgery, along with options that may be considered in the event that complications occur. *(III, good quality, strong recommendation)*

TABLE 4	HIGH-RISK CHARACTERISTICS FOR INTRAOPERATIVE AND POSTOPERATIVE COMPLICATIONS
---------	--

High-Risk Characteristic	Special Considerations			
Anterior megalopia	Zonular laxity			
	 Pigment dispersion (associated with elevated IOP) 			
	Retinal detachment			
Contour abnormalities	Keratoconus			
	Pseudoexfoliation			
	 Short eye (i.e., hyperopia) 			
Corneal opacification	Reduced visibility			
	 Worsening of corneal clarity 			
Deeply set eye, narrow lid fissure, or prominent	Reduced visibility			
brow	 Poor access to the limbus 			
	 Pooling of irrigation fluid 			
	 Wound deformation and leakage 			
Dense brunescent nuclear cataract ^{861,862}	Concomitant zonular laxity and intraoperative miosis			
	 Little cortex to protect the capsule during 			
	phacoemulsification			
	 Increased phacoemulsification time with increased risk of postoperative corneal edema 			
	 Greater risk of thermal and mechanical injury to the 			
	cornea and iris with phacoemulsification			
	• Increased risk of posterior capsule rupture and zonular			
	dehiscence			
High hyperopia ⁸⁶³⁻⁸⁶⁵	 Shallow anterior chamber with increased risk of 			
(with short axial length)	endothelial trauma			
	Increased risk of iris trauma and prolapse			
	Difficulty calculating lens implant power			
	 Intraoperative suprachoroidal effusion (particularly in nanophthalmic eyes) 			
High myopia ⁸⁶⁶⁻⁸⁷¹	Anterior chamber depth fluctuation due to reverse			
ngn nyopid	pupillary block			
	 Difficulty calculating lens implant power, especially 			
	with posterior staphyloma			
	 Decreased ocular rigidity, difficulty sealing the wound 			
	 Increased risk of retinal detachment 			
Miotic pupil ^{689,872}	Poor visualization			
	 Increased risk for capsule tear/vitreous prolapse 			
	 Increased risk for iris damage and prolapse 			
Posterior polar cataract ^{873,874}	Defective posterior capsule			
	 Increased risk of dropped nucleus 			
Posterior synechiae	Intraoperative miosis			
	 Prolonged postoperative inflammation 			
	 Inflammatory deposits on IOLs 			
	Iris bleeding			
Potential need for vitreoretinal surgery ⁸⁷⁵	Silicone IOLs may compromise subsequent surgical			
	visibility if posterior segment surgery or silicone oil is needed			
Prior anti-VEGF injections	Endophthalmitis			
	Posterior capsular rupture			
	 Retained lens fragments⁸⁷⁶ 			

High-Risk Characteristic	Special Considerations				
Prior glaucoma filtration surgery ⁸⁷⁷⁻⁸⁸⁰	 Increased filtration through the bleb during surgery Decreased filtration or bleb failure after surgery Postoperative hypotony Zonular laxity 				
Prior keratorefractive surgery ⁸⁸¹⁻⁸⁸³	 IOL-power calculation inaccuracy Transient hyperopic shift immediately after surgery in eyes with a history of radial keratotomy Dehiscence of refractive keratotomy incision Reduced visual potential due to irregular astigmatism Corneal aberrations with glare and haloes 				
Prior pars plana vitrectomy ⁸⁸⁴⁻⁸⁸⁶	 Conjunctival scarring Intraoperative anterior chamber depth fluctuation, especially severe deepening Intraoperative miosis Increased nuclear sclerosis Increased frequency of posterior capsule plaques Weakened lens capsule and zonules 				
Prior keratoplasty ⁸⁸⁷⁻⁸⁸⁹	 Poor visualization Graft rejection or failure IOL-power calculation inaccuracy Hyperopic shift in association with DSEK 				
Prior scleral buckling surgery ^{890,891}	 Change in axial length affects IOL power calculation Conjunctival scarring Increased risk of sclera perforation with injection anesthesia 				
Pseudoexfoliation	Zonular laxityPoor pupil dilationElevated IOP after surgery				
Relative anterior microphthalmos ^{892,893}	 Damage to iris, cornea, and posterior capsule IOL-power calculation inaccuracy 				
Shallow anterior chamber	 Iris injury Iris prolapse Postoperative corneal edema 				
Use of systemic sympathetic alpha-1a antagonist medication for treatment of prostatic hypertrophy ^{894,895} and other systemic conditions	 Poor pupillary dilation, intraoperative miosis, iris billowing and prolapse 				
White cataract (mature cortical cataract) ⁸⁹⁶⁻⁸⁹⁹	 Difficulty performing the capsulorrhexis (capsule staining may be helpful)⁹⁰⁰ Lens intumescence Radial capsulorrhexis tear with extension into posterior capsule 				
Zonular laxity or dehiscence (e.g., trauma) ^{689,901,902}	 Phacodonesis Vitreous prolapse around the lens equator Capsular rupture with retained lens fragments Fluid misdirection syndrome Postoperative lens implant decentration Increased risk of radial capsulorrhexis tear Capsular contraction with late IOL/capsular bag decentration or dislocation 				

TABLE 4 High-Risk Characteristics for Intraoperative and Postoperative Complications (continued)

DSEK = Descemet stripping endothelial keratoplasty; IOL = intraocular lens; IOP = intraocular pressure; VEGF = vascular endothelial growth factor

In handling high-risk eyes, several technique modifications and/or adjunctive devices should be considered.

Ophthalmic viscosurgical devices vary in rheologic properties that may be advantageous for certain higher risk cases.⁹⁰³ A specific OVD may be selected based on its characteristics in cases of corneal endothelial deficiency, shallow anterior chamber, intumescent cataract, and small pupil.⁹⁰³

Capsular dyes to stain the anterior capsule may be considered in cases of a white or mature cataract, or where visibility is compromised.^{897,900}

Capsular tension rings can be useful adjunctive devices when weak zonules are present, reducing the likelihood of intraoperative zonular separation and capsular complication,⁹⁰⁴ and they may improve postoperative IOL centration.⁹⁰⁵ In cases of more profound zonulopathy, other options include capsular retractors, a modified capsular tension ring, or a capsular tension segment for scleral suture fixation.⁹⁰⁶

Intraoperatively, a variety of methods have been described to expand the small pupil. Pharmacologic methods include intracameral alpha-1 agonists such as epinephrine or phenylephrine.⁹⁰⁷ Mechanical methods include viscomydriasis, release of posterior synechiae, pupil stretching, or microsphincterotomies, iris retractors, or pupil expansion rings.⁹⁰⁸

Intraoperative floppy iris syndrome is a unique small-pupil syndrome associated with iris billowing and prolapse as well as with progressive intraoperative miosis.^{894,909} It is associated with a higher rate of surgical complications, particularly when it is not recognized or anticipated.^{894,909-912} It can be anticipated when the patient has a history of using oral alpha-1 antagonists (e.g., tamsulosin). Pupil stretching and sphincterotomies are ineffective in these eyes, and pharmacologic approaches, viscomydriasis, and pupil-expansion devices, either alone or in combination, should be used to manage IFIS.^{894,909,910} (*II-, moderate quality, strong recommendation*)

Systemic Comorbidities

Systemic comorbidities that may be of importance intraoperatively include diabetes mellitus, pulmonary dysfunction, cardiovascular dysfunction (e.g., poorly controlled blood pressure, poorly controlled heart failure), musculoskeletal disorders causing positional difficulties, tremor, severe hearing impairment, anxiety disorders, mental retardation, dementia, and coagulopathies.⁹¹³ For patients with complex medical conditions, it may be beneficial to coordinate care with the patient's primary care physician. Depending on the planned anesthesia and sedation, appropriate measures should be taken to stabilize and monitor the condition. *(III, good quality, strong recommendation)*

The occurrence of IFIS is strongly associated with systemic alpha-1 antagonists, whose most common indication is the symptomatic treatment of benign prostatic hyperplasia.^{894,895,909,914} The American Urological Association guidelines for the management of benign prostatic hyperplasia recommend that men and women with planned cataract surgery avoid the initiation of alpha-1 antagonists until their cataract surgery is completed.⁹¹⁵ Discontinuing alpha-1 antagonists preoperatively does not typically prevent IFIS, which may occur long after drug cessation.^{894,909-911,915} Several retrospective and prospective studies^{894,909,911,912,916} suggest that IFIS is more frequent and severe in patients taking the alpha-1a subtype-specific antagonist, tamsulosin, than in patients taking nonselective alpha-1 antagonists,⁹¹⁷ and this has been confirmed in a meta-analysis.⁹¹⁸ Intraoperative floppy iris syndrome is associated with a higher risk of complications.⁶⁵¹

A 2009 meta-analysis found that patients taking warfarin while undergoing cataract surgery had a threefold increase (overall 9%–10% incidence) of bleeding events compared to those not on warfarin.⁹¹⁹ The vast majority of bleeding events were self-limited, typically hyphemae or subconjunctival hemorrhage. There was no evidence that continuing warfarin had a negative impact on postoperative visual acuity. This analysis included studies with

patients undergoing ECCE as well as phacoemulsification and who had topical, sub-Tenon's, or peri- or retrobulbar anesthesia.

Similarly, an analysis of 48,862 surgeries from the U.K. Cataract National Dataset found that patients on warfarin or clopidogrel had an increased incidence of subconjunctival hemorrhage (3.7% warfarin, 4.4% clopidogrel, 1.7% nonusers) and complications from anesthetic blocks via sharp needle injection or sub-Tenon's cannula (6.2% warfarin, 8% clopidogrel, 4.3% nonusers).⁷⁰⁸ However, there was no significant increase in potentially sight-threatening complications from local anesthetic or operative hemorrhage (hyphema, choroidal/suprachoroidal hemorrhage). In patients taking aspirin alone, there was no increase in hemorrhagic or anesthetic complications.

Another study of 19,283 surgeries (74% of which included a peri- or retrobulbar block) found that patients who continued aspirin or warfarin did not have an increased risk for ocular hemorrhagic events (hyphema, vitreous hemorrhage, retrobulbar hemorrhage). No information was provided on subconjunctival hemorrhage or eyelid ecchymosis.⁹²⁰

Data on the use of newer anticoagulants with cataract surgery are sparse. One study randomized patients with atrial fibrillation to either warfarin or dabigatran, with temporary cessation before surgery, and found similar rates of periprocedural bleeding.⁹²¹

An increasing number of patients are on dual antithrombotic medications. A recent study screened 141,213 emergencies referred to a university hospital. Three cases of grade IV retrobulbar hemorrhage were identified; two of these patients were on combined acetylsalicylic acid and clopidogrel and received retrobulbar injections.⁹²² In contrast, the U.K. study of 48,862 cataract surgeries found no increase in anesthetic or hemorrhagic complications in patients on dual antiplatelet or combined aspirin/warfarin treatment who received blocks or sub-Tenon's anesthesia.⁷⁰⁸

In summary, several studies show a higher incidence of subconjunctival hemorrhage in patients undergoing cataract surgery while taking antiplatelet or anticoagulant medication,^{708,919,923,924} but the available data do not show an increase in sight-threatening complications^{708,920,923,924} or decreased postoperative visual acuity.⁹¹⁹ While reassuring, given the very low rate of ocular hemorrhagic complications of cataract surgery, these data are still limited by insufficient power to definitively conclude that anticoagulation does not increase the risk for ocular hemorrhagic complications from local anesthesia or operative hemorrhage. Evidence-based guidelines recommend continuation of anticoagulants in patients undergoing cataract surgery provided that the international normalized ratio is in the therapeutic range⁹²⁵⁻⁹²⁷ (*I*+, good quality, strong recommendation) and that aspirin be discontinued perioperatively only if the risk of bleeding outweighs its potential benefit.⁹²⁸ (*I*-, good quality, strong recommendation) Management of these cases should still be tailored to the individual patient's situation.^{929,930}

There are no recommendations from either the American Heart Association⁹³¹ or the American Academy of Orthopaedic Surgeons to prescribe systemic antibiotic prophylaxis for patients with artificial heart valves or joint prostheses who undergo cataract surgery.⁹³²

Combined Surgery and Special Circumstances

Cataract surgery and glaucoma

When a candidate for cataract surgery also has glaucoma, surgical treatment options include cataract and IOL surgery alone, combined cataract and glaucoma surgery, glaucoma surgery after cataract surgery, or cataract surgery after glaucoma surgery. Glaucoma surgical options include trabeculectomy, aqueous shunts, nonpenetrating glaucoma surgery, minimally invasive glaucoma surgery, and endocyclophotocoagulation.⁹³³ A Veterans Affairs retrospective cohort study has shown eyes with glaucoma are at increased risk for complications and have more modest visual outcomes after cataract surgery compared with eyes that do not have glaucoma.⁹³⁴

Cataract surgery with IOL implantation alone results in a modest reduction of IOP, which may be particularly advantageous for patients with suspected or confirmed primary angle

closure or for mild to moderately severe open-angle glaucoma controlled on medication.⁹³⁵ Studies have found that the degree of IOP reduction is greater with higher preoperative IOP levels and that the benefit may last for several years.^{820,822,824,936,937} A more recent prospective study found older patients, eyes with shorter axial length, women, and those with glaucoma or pseudoexfoliation more likely to benefit from this effect.⁹³⁸ Moreover, an assessment by the American Academy of Ophthalmology and a review by Allen presented similar findings.^{618,939}

Generally, a combined phacotrabeculectomy is not as effective as glaucoma surgery alone in lowering IOP.^{935,940} Both one-site and two-site combined procedures appear to provide similar IOP reduction.⁹⁴¹ Phacoemulsification combined with trabeculectomy provides good IOP control as well as improved BCVA compared with preoperative vision.^{942,943} A variety of new glaucoma technologies may be combined with cataract surgery. These include canaloplasty,⁹⁴⁴ ab interno trabeculotomy,⁹⁴⁵ endocyclophotocoagulation,⁹⁴⁶ and ab interno trabecular bypass microstents⁹⁴⁷ implanted at the time of cataract surgery. Compared with traditional filtering surgery with antimetabolite usage, these adjunctive technologies may reduce the risk of hypotony and bleb complications, but they may not lower the IOP as much.^{948,949} A prospective, multicenter, randomized, single-masked, controlled clinical trial showed that IOP was clinically and statistically significantly lower at 2 years in the trabecular bypass microstent plus cataract surgery group compared with the cataract surgery alone group, with no differences in safety.⁹⁵⁰

Potential benefits of a combined procedure (cataract extraction with IOL implantation and trabeculectomy) are protection against a potential postoperative IOP spike and long-term IOP control with a single operation.⁹³⁵ However, a 2015 Cochrane review examined combined versus cataract surgery alone in patients with glaucoma and concluded that there is low-quality evidence that combined cataract and glaucoma surgery may result in better IOP control at 1 year compared with cataract surgery alone. The authors suggested the need for further RCTs to further develop evidence-based therapeutic guidelines.⁹⁵¹

Although filtration surgery is potentially indicated in eyes with active uveitis, neovascularization, or multiple anterior segment problems, there are disadvantages to performing it as a separate procedure before cataract surgery. These include increased perioperative and anesthetic risks and the possibility of inducing filtration failure as a result of subsequent cataract surgery.

The benefit of the adjunctive use of antifibrotic agents (mitomycin-C and 5-fluorouracil) to reduce the potential for bleb failure in combined phacotrabeculectomy remains controversial. A 2014 Cochrane review found no RCTs to test the effectiveness of antimetabolites with the goal of preventing previous trabeculectomy failure and concluded with the need for such trials in the future.⁹⁵² Although it appears that commonly-used mitomycin-C may be effective in producing lower IOPs long-term when used with combined procedures, 5-fluorouracil has no such effect.^{935,940,953} Potential vision-threatening complications, such as bleb-related endophthalmitis,⁹⁵⁴⁻⁹⁵⁶ hypotony maculopathy,⁹⁵⁷ and late-onset bleb leaks⁹⁵⁸ should be considered in the decision to use antifibrotic agents.

The best surgical option depends on a number of factors, including the patient's response to medical or laser surgical treatment of the glaucoma, the degree of optic nerve damage, changes in the visual field, severity of the cataract, and the surgeon's experience.

Cataract surgery and keratoplasty

The presence of endothelial dystrophy presents a challenge to the cataract surgeon in predicting how well the compromised cornea will function following cataract surgery. Evaluation of the corneal endothelium is helpful in assessing the cataract patient preoperatively. If a slit-lamp biomicroscopic examination reveals microcystic edema or stromal thickening, and/or central corneal pachymetry greater than 640 microns,⁸⁵² and/or low central endothelial cell counts by specular microscopy, there is an increased likelihood of corneal failure following cataract surgery. A history of prolonged blurred vision upon awakening in the morning often indicates significant endothelial pump impairment. If the

lack of evaporation while sleeping leads to symptomatic corneal edema, then the likelihood of decompensation after cataract surgery is high. Under these circumstances, a combined procedure of cataract extraction, IOL implantation, and corneal transplantation may be considered.⁹⁵⁹ With borderline endothelial reserve, a more peripheral incision, either temporal clear cornea or corneoscleral, and repeated instillation of OVD may preserve more endothelial cells.⁹⁶⁰

There are several reasons to consider combining cataract extraction with corneal transplantation, even in the presence of a mild cataract. These benefits include the following:

- Cataracts may progress more rapidly after corneal transplantation
- The use of topical corticosteroids following surgery may hasten PSC development
- Cataract surgery subsequent to corneal transplantation may damage the corneal graft
- Surgery is limited to a single procedure
- Visual rehabilitation is more rapid

The use of capsule staining dyes may improve the likelihood of achieving an intact capsulorrhexis when performing a combined corneal transplant and cataract extraction.⁹⁶¹

Because the postpenetrating keratoplasty corneal curvature is not known at the time of a combined procedure, IOL calculations are less accurate.⁹⁶² Therefore, some surgeons prefer to perform penetrating keratoplasty first, followed by cataract removal later after sutures are out and the corneal graft contour has stabilized. If the cataract is removed following suture removal and stabilization of corneal graft keratometry, a more predictable IOL power and, hence, refractive result may be possible.^{963,964} In some cases, this approach has the advantage of reducing the amount of "open-sky" time during the penetrating keratoplasty surgery. These considerations apply to deep anterior lamellar keratoplasty as well. If possible, at the time of surgery, phacoemulsification should be performed before penetrating keratoplasty if visualization is adequate in order to limit the amount of open-sky time.⁹⁶⁵ (*III, good quality, strong recommendation*) However, hydration of the vitreous and high posterior pressure is a potential problem during the keratoplasty phase.

An alternative to penetrating keratoplasty for the treatment of endothelial decompensation is transplantation of the endothelium and posterior stroma or replacement of the endothelial layer with Descemet membrane alone.^{966,967} These procedures can be combined with phacoemulsification and foldable IOL implantation with good results.^{854,968} Among other potential advantages, this approach preserves the anterior corneal curvature and, therefore, should improve IOL-power predictability when compared with combined penetrating keratoplasty and cataract surgery. Both OCT and Scheimpflug imaging have shown Descemet stripping endothelial keratoplasty to induce a hyperopic refractive shift due to the change in the posterior corneal contour. Although it decreases over time, the hyperopic shift (approximately +0.6 D after 12 months in one study⁹⁶⁹ and +1.47 D from the expected biometry result in a second study⁹⁷⁰) should be considered if there is significant risk of corneal decompensation following cataract surgery.^{969,970}

Unfortunately, studies to date have shown variability in hyperopic shift. One showed a mean decreased corneal power of 1.94 D compared with controls,⁹⁷¹ while another reported a mean outcome of +1.63 D from the expected result looking at combined corneal and cataract surgery (range of 0 D to 4.0 D).⁹⁷² A third showed only a 0.15 D hyperopic shift that was not statistically different from the preoperative refraction.⁹⁷³ This variability depends on how the posterior corneal transplant is fashioned, so it is best to check with the corneal surgeon to determine the expected result and adjust the IOL power accordingly. The refractive shift will be less of a problem with DMEK, where a reported hyperopic shift was 0.49 D (range from -1.00 D to +1.50 D).⁹⁷⁴ A retrospective case review on the management of postkeratoplasty astigmatism showed that toric IOLs placed during cataract surgery, after penetrating keratoplasty and full suture removal, reduced manifest refraction cylinder and that uncorrected distance visual acuity and corrected distance visual acuity improved in patients with moderate to high regular preoperative topographic astigmatism.¹⁸⁸

If the indication for considering corneal transplantation is the presence of a central opacity, rather than endothelial dysfunction, and adequate clear cornea is present in the midperiphery, the surgeon has the option of performing cataract surgery followed by a sphincterotomy to establish a clear entrance pupil.⁹⁷⁵ The use of a capsule-staining dye can facilitate the ability to perform cataract surgery safely in the presence of a mild corneal opacity, possibly avoiding the need for corneal transplantation when the principal indication for a corneal transplant is to improve surgical visualization.⁹⁷⁶

Cataract surgery and vitreoretinal surgery

Cataract surgery is often necessary before, during, or following vitreoretinal surgery. Vitreoretinal procedures, including intravitreal injections, may cause pre-existing cataracts to progress, typically manifesting as increased nuclear sclerosis.⁹⁷⁷⁻⁹⁸² Management of such cataracts may be more complex, because capsular defects or weakened zonules may be present. The anterior chamber depth may also be unstable during surgery. Iris hooks can be helpful in these situations. Adequate visual rehabilitation may occur with cataract surgery alone for some retinal pathologies. Combined vitreoretinal and cataract surgery offers the advantage of a single operative procedure and anesthesia, potentially faster recovery, and cost-effectiveness.⁹⁸³⁻⁹⁸⁵ A wide range of vitreoretinal disorders may be dealt with concomitantly, including vitreous hemorrhage, diabetic retinopathy, epiretinal membrane, macular hole, and retinal detachment.⁹⁸⁶⁻⁹⁸⁸

Phacoemulsification with in-the-bag placement of a foldable IOL is a good option when combined with many vitreoretinal procedures. However, pars plana lens fragmentation with simultaneous or later sulcus placement of a posterior chamber IOL is still often used for more complex cases.⁹⁸⁹ Secure wound closure is important to permit safe vitreoretinal maneuvers.⁹⁹⁰⁻⁹⁹² Surgeons should consider the nature of the posterior segment pathology and need for visualization when selecting the IOL style, biomaterial, and optic size.^{549,550,993,994} Specifically, intraoperative visualization of the posterior segment may become impaired when a silicone optic comes into contact with silicone oil or a gas bubble.^{549,550} Additionally, there have been reports of IOL calcification with the use of intravitreal air, gas, or silicone oil in retinal surgery, often with hydrophilic acrylic IOLs, but other IOL materials can also be similarly affected.⁹⁹⁵

A mild myopic shift is recognized in some cases of combined surgery.996,997

Possible disadvantages of simultaneous cataract and vitreoretinal surgery include prolonged surgical time, cataract-wound dehiscence caused by globe manipulation during subsequent vitreoretinal surgery, intraoperative miosis after cataract extraction, IOL decentration or optic capture, and undesirable optical effects during vitreoretinal surgery if the IOL is implanted prior to the posterior segment procedure.

A 2013 Cochrane study reviewed the effectiveness and safety of surgery for postvitrectomy cataract with respect to visual acuity, quality of life, and other outcomes.^{998,999} The review was unable to identify any randomized or quasi-RCTs comparing cataract surgery with no cataract surgery for patients who developed cataracts following vitrectomy surgery and recommended a RCT to address this gap in evidence.

Cataract surgery following refractive surgery

Patients who have had prior corneal refractive surgery present a number of challenges for IOL-power calculation. In addition to an inability to measure the central corneal power accurately, many IOL formulas predict the effective lens position based on the corneal curvature. Keratorefractive steepening or flattening of the cornea therefore introduces a formula artifact. In addition, surgical strategies vary with the nature of the prior refractive surgery.

Following radial keratotomy, it is best to avoid having the new cataract-surgery incision cross or intersect pre-existing incisions, as this could lead to incision dehiscence, wound leak, delayed healing, and irregular astigmatism.¹⁰⁰⁰⁻¹⁰⁰³ Microincision methods may be helpful in this situation, and when many incisions are present, a scleral incision may lessen the chance of involving the original incisions.

In the case of radial keratotomy, the induced central corneal flattening renders traditional keratometric readings inaccurate. This is because keratometers estimate the central corneal curvature based on paracentral measurements, and they will therefore fail to detect the full degree of central flattening.^{1004,1005} The clinical history method (which requires knowledge of presurgical keratometry and refraction) is generally not helpful following radial keratotomy due to the common occurrence of progressive central corneal flattening (hyperopic drift) that may continue for years to decades. Certain specific forms of automated computerized videokeratography (topography or tomography) can help in determining true central corneal power.^{1006,1007}

In general, prior laser refractive surgery does not cause anatomic challenges during cataract surgery. On the other hand, in cases with previously implanted phakic refractive IOLs, the refractive IOL must be removed prior to or concomitant with cataract surgery.

Each type of refractive surgery presents a unique problem for determining the correct IOL power. Following myopic laser vision correction, the cornea tends to have more positive spherical aberration than average and so would optically benefit from a more negative aspheric IOL. Conversely, after hyperopic laser correction, the cornea generally has a more negative asphericity and would benefit from a positively spherical IOL.¹⁰⁰⁸

After excimer laser refractive surgery (by either surface or intrastromal photoablation), corneal-power readings with traditional keratometers, automated refractors, and topographers are often incorrect as result of the surgical alteration of the anterior corneal curvature and the changed relationship between anterior and posterior corneal powers. As a result, there is a tendency for hyperopic refractive errors after cataract surgery in eyes with prior myopic photoablation.^{881,1009-1012} Similarly, eyes that have had prior hyperopic photoablation are prone to myopic optical errors after cataract surgery.¹⁰¹³

A number of calculation methods and correction algorithms, some of which require knowledge of prior corneal power, refraction, and the change in manifest refraction, have been developed to help determine IOL power following refractive surgery, but there is presently no consensus about a best method.¹⁰¹⁴⁻¹⁰²⁴ Patients should be informed of the potential inaccuracies of IOL-power calculation and that further surgery may be necessary to achieve the desired target refraction. *(III, good quality, strong recommendation)*

For the most accurate IOL-power calculation methodologies for patients who have previously undergone radial keratotomy or myopic or hyperopic photoablation, the ASCRS has developed a regularly updated online IOL-power calculator available at <u>http://iolcalc.ascrs.org/</u>.^{249,1025} Also, as mentioned in the Optical and Refractive Considerations section, intraoperative aberrometry may aid in IOL selection in postlaser vision-corrected eyes.²⁸⁵

Postoperative corneal hydration or edema and elevated IOP may amplify the effect of radial keratotomy incisions, causing transient hyperopia and changes in astigmatism. The timing of any further refractive surgical intervention can be delayed until the refraction is stable.¹⁰⁰⁰

Cataract surgery and uveitis

There are special issues to consider when patients with uveitis undergo cataract surgery.^{1026,1027} Patients with active inflammation, particularly those with anterior or intermediate uveitis, are at substantial risk for postoperative complications. A major potential problem, especially among patients with pre-existing iris damage or extensive posterior synechiae, is the development of postoperative adhesions between the iris and lens capsule postoperatively. Other potential problems include membrane formation, IOL deposits, zonular problems, and CME. Coordination with the physicians treating the patient's uveitis prior to cataract surgery will provide for appropriate prophylactic anti-inflammatory therapy and improve postsurgical outcomes.

There are many important factors to consider in the presence of uveitis. Ideally, inflammation should be inactive or controlled as much as possible prior to elective surgery.⁸⁵⁸ Many uveitis specialists advocate 3 months or more of quiescence prior to surgery, as this reduces the risk of postoperative macular edema.^{838,858,859} Even if the patient

is on chronic anti-inflammatory therapy, additional topical and/or oral corticosteroids are often recommended prior to surgery to pre-empt severe postoperative exacerbations.⁸³⁹ In one study, preoperative treatment with oral corticosteroids seemed to decrease the risk of postoperative CME.⁸⁵⁹ The medical regimen should be individualized based on the severity and sequelae of past episodes of uveitis and the ease with which inflammation has been previously controlled. *(III, good quality, strong recommendation)* Surgical planning should take into account the possible need for other procedures, which are often required because of associated uveitic complications, such as secondary glaucoma. *(III, good quality, strong recommendation)* Surgical procedures may need to be modified to manage pre-existing posterior synechiae, pupillary membranes, zonular compromise, and fibrotic scarring of the pupillary margin.

The safety of IOLs in most eyes with uveitis is now generally accepted. Intraocular lens material does not seem to be a major influence on the course of postoperative inflammation. However, a recent evidence-based review and meta-analysis indicates that some IOL materials may be associated with better outcomes than others.⁸³⁸ In this study, eyes receiving acrylic IOLs or heparin-surface-modified (HSM) polymethylmethacrylate had better visual outcomes than those receiving non-HSM polymethylmethacrylate or silicone IOLs.¹⁰²⁸ The authors concluded that preoperative control of uveitis, use of an acrylic or HSM IOL, and a diagnosis of Fuchs heterochromic cyclitis were associated with better outcomes. However, a 2014 Cochrane review found evidence of a superior effect of hydrophobic acrylic lenses over silicone lenses, specifically for posterior synechiae outcomes, but this effect was reported from a single study that suffered from potential performance and detection bias. The small sample sizes and heterogeneity in outcome reporting resulted in insufficient information to assess these and other types of IOL materials for cataract surgery for eyes with uveitis.⁸³⁹ Lastly, a study of 171 eyes found a good long-term biocompatibility and safety profile in uveitic eyes receiving hydrophobic acrylic IOLs.1029

Intraocular lens-related complications may include inflammatory deposits, surface membrane formation, and inflammatory capsular complications capable of causing IOL subluxation. Leaving the eye aphakic may be considered in severely damaged uveitic eyes with extensive pupillary or ciliary membrane formation or signs of intractable inflammation such as hypotony and severe flare. In most cases, standard placement of the IOL haptics into the capsular bag is preferred; however, sulcus fixation of the haptics may allow the IOL to block the formation of iridocapsular adhesions in high-risk eyes (e.g., extensive iris damage or preoperative posterior synechiae). This technique does not seem to increase postoperative inflammation.⁸³⁵ With capsular bag placement, a large-diameter capsulorrhexis may also decrease the risk of postoperative synechiae to the anterior capsule. Anterior chamber IOLs may stimulate more inflammation and may be problematic if the angle anatomy is compromised.

Although the pupil may dilate poorly in eyes with uveitis, excessive iris manipulation should be minimized as much as possible to avoid worsening of the inflammation and posterior synechiae formation. Postoperative use of short-acting topical mydriatic agents may help to prevent postoperative synechiae formation; however, fixed dilation with long-acting cycloplegic agents such as atropine may lead to formation of posterior synechiae in the dilated state. Adjunctive corticosteroids at the time of surgery (intravenous, periocular, or intraocular) should be considered. *(III, good quality, strong recommendation)* Patients with uveitis are at risk of postoperative inflammatory exacerbation. Postoperatively, eyes with uveitis generally require greater frequency and duration of topical anti-inflammatory treatment and should be monitored closely for complications such as severe iridocyclitis, secondary glaucoma, posterior synechiae, secondary membranes, and CME.¹⁰³⁰ *(III, good quality, strong recommendation)*

Postoperative inflammation and CME generally respond to anti-inflammatory treatments. As with preoperative prophylactic treatment, postoperative coordination of management of uveitis patients along with the uveitis care provider is recommended.

Cataract in the functionally monocular patient

A functionally monocular patient is one who is primarily dependent on the eye being considered for cataract surgery. There may be significant ocular comorbidity or other high-risk characteristics in such eyes.^{1031,1032} The indications for surgery in the functionally monocular patient are the same as for other patients; that is, when the cataract-impaired vision no longer meets the patient's needs and the anticipated benefits of surgery exceed the risks. Cataract surgery for these patients results in a greater improvement in functional vision than surgery in binocularly sighted patients.¹⁰³³ When cataract surgery is contemplated in a functionally monocular patient, the ophthalmologist has an obligation to inform the patient that blindness is one of the risks of cataract surgery and that it can also result from worsening ocular comorbidity following surgery.¹⁰³⁴ (*III, good quality, strong recommendation*)

The ophthalmologist and patient should consider that delaying surgery until the cataract is very advanced may increase surgical risk and slow visual recovery. *(III, good quality, strong recommendation)*

Second-eye Surgery

Clinical studies provide convincing evidence that binocular summation occurs in individuals who have similar visual acuities in the two eyes and at low illuminance levels.¹⁰³⁵⁻¹⁰⁴⁰ In addition, these studies demonstrate that binocular gain or summation is less likely when the visual acuities in the two eyes are dissimilar or when the individual is older. Patients with a cataract and dissimilar vision in the two eyes (or one eye with cataract extraction and the second eye with a cataract) demonstrate binocular inhibition.¹⁰⁴⁰ A large epidemiological study demonstrates that persons who exhibit binocular inhibition are more likely to have driving difficulties compared with those who do not have binocular inhibition.¹⁰³⁵ It is important to discuss this with patients who have potential anisometropia before proceeding with cataract surgery. These data taken together suggest an improvement in binocular visual function and quality of life if cataract surgery in the second eye provides similar visual acuities in the two eyes.

Studies comparing the outcomes of first- and second-eye cataract surgeries concluded that patients who had surgery in both eyes had greater improvement in functional status than those who underwent surgery in only one eye.^{117,1041-1046} Patients who had surgery in both eyes were significantly more satisfied with their visual function than patients who had surgery in only one eye.^{1041,1047} Another study demonstrated that the cataractous eye interfered with the visual function of the pseudophakic eye and that complaints of visual disability were eliminated after second-eye surgery.¹⁰⁴⁸ One study found that stereoacuity increased from 32% of patients after first-eye surgery to 90% after second-eye surgery. Also, binocular horizontal field of vision improved in 36% of patients. The number of patients able to meet the driving standard increased from 52% after first-eye surgery to 86% after second-eye surgery.¹⁰⁴⁹ Cataract surgery for both eyes is an appropriate treatment for patients with bilateral cataract-induced visual impairment.^{1041,1043,1044,1050} (*I-, good quality, strong recommendation*)

A review of multiple randomized controlled studies showed that in the long term, secondeye cataract surgery is not only clinically effective but has also been found to be costeffective.¹⁰⁵¹

The indications for second-eye surgery are the same as for the first eye. The outcome of surgery on the first eye may affect the timing of second-eye surgery. In some patients, a byproduct of reducing ametropia in the first operated eye may be anisometropia. This may result in impaired stereoacuity and a reduction in a patient's ability to perform daily activities. In patients whose anisometropia interferes with visual function, second-eye surgery may be appropriate at an earlier stage of cataract development.^{1043,1052}

In some patients, a contact lens may resolve the anisometropia, and cataract surgery can then be deferred.

Determining the appropriate interval between the first-eye surgery and the second-eye surgery is influenced by several factors: the patient's visual needs and preferences, visual acuity and function of the second eye, the medical and refractive stability of the first eye, and the degree of anisometropia. Prior to performing second-eye surgery, the refractive error of the first eye should be determined in order to select the appropriate IOL power for the second eye.^{1053,1054}

Immediate Sequential (Same Day) Bilateral Cataract Surgery

Most ophthalmologists do not perform immediate sequential bilateral cataract surgery. The rapid visual recovery and low complication rates associated with SICS under topical anesthesia have led to increased interest in this approach in some international centers.¹⁰⁵⁵⁻¹⁰⁶⁸ particularly in health care delivery systems with long waiting times for cataract surgery in the second eve.^{1055,1065-1067} Prospective comparative trials of immediate sequential (same day) versus delayed sequential (different day) cataract extraction document some cost reduction with same-day bilateral surgery and a short-term functional advantage. 1062-1067,1069,1070 Assuming the patient prefers cataract surgery in both eyes, immediate sequential bilateral surgery has advantages and disadvantages that must be carefully weighed and discussed.¹⁰⁷¹ Foremost is the risk of potentially blinding complications in both eves, such as endophthalmitis or TASS. For this reason, the second eye should be treated like the eye of a different patient using separate povidone iodine prepping, draping, instrumentation, and different supply lot numbers such as irrigating solutions, OVD, and medications. (III, good quality, strong recommendation) This may be especially true for compounding pharmacies. In published reviews, bilateral complications are rare and the procedure is safe, 1055-1061,1072,1073 but there have been case reports of bilateral endophthalmitis occurring with sequential surgery when these guidelines for strict separation of the two surgical setups were not followed.^{1063,1064,1074,1075} If a complication should occur intraoperatively during the first eye surgery, then surgery on the second eye should be reconsidered and done at a later date. (III, *good quality, strong recommendation)*

Another potential disadvantage of immediate sequential bilateral surgery is the inability to adjust surgical plans for the second eye on the basis of results from the first-eye surgery.¹⁰⁵⁴ In addition to an unanticipated refractive outcome in the first eye, IOL selection for the second eye may also be altered because the patient decides on a different refractive target or type of IOL based on the first eye's outcome.¹⁰⁵⁴ One study did show that 5% of patients had a change of IOL power based on the results of the first eye and, with improving preoperative and intraoperative biometry, this number should improve over time.¹⁰⁷⁶

Indications that have been reported for immediate sequential bilateral cataract surgery include the need for general anesthesia in the presence of bilateral visually significant cataracts, situations where travel for surgery and follow-up care is a significant hardship for the patient, and when the health of the patient may limit surgery to one surgical encounter.^{1056,1059,1068}

Discharge from Surgical Facility

Typical criteria for discharge after ambulatory surgery are as follows:

- Vital signs are stable
- Preoperative mental state is restored
- Nausea and vomiting are controlled
- Pain is absent or minimal
- An escort is available if necessary
- Postsurgical care has been reviewed with the patient and/or escort and written postoperative instructions have been provided
- A follow-up appointment has been scheduled

Operative complications of an ocular or medical nature are possible indications for transfer and postoperative hospitalization. In the Study of Medical Testing for Cataract Surgery (n=19,250 surgeries), there were 61 (0.3%) hospitalizations on the day of cataract

surgery.²³⁵ Ocular complications that may require hospitalization include hyphema, uncontrolled elevated IOP, threatened or actual expulsive suprachoroidal hemorrhage, retrobulbar hemorrhage, severe pain, other ocular problems requiring acute management or careful observation. Medical complications can include cardiac or respiratory instability, a cerebrovascular episode, diabetes mellitus or hypertension requiring acute management, uncontrolled nausea or vomiting, acute urinary retention, acute psychiatric disorientation, or other medical conditions requiring management in an acute-care setting with careful monitoring.

Situations under which extended observation might be warranted include the following:

- Medical conditions are present that require prolonged postoperative observation by nurses or other skilled personnel
- Patient is mentally debilitated or diagnosed as mentally ill
- Patient cannot exercise self-care (or responsible care is unavailable) during the immediate postoperative period
- Patient is functionally monocular and has had cataract surgery in the eye on which he or she is dependent

Postoperative Management

The operating ophthalmologist has the ultimate responsibility for the preoperative assessment and postoperative care of the patient, beginning with the determination of the need for surgery and ending with completion of the postoperative care contingent on medical stability of the patient.¹⁰⁷⁷ The ophthalmologist who performs the cataract surgery has a unique perspective and thorough understanding of the patient's intraoperative course, postoperative condition, and response to surgery. The postoperative period is the time in which most complications occur and within which stable visual function is achieved. The operating ophthalmologist has an ethical obligation to the patient that continues until postoperative rehabilitation is complete.

The operating ophthalmologist should also provide those aspects of postoperative eye care that are within the unique competence of the ophthalmologist. *(III, good quality, strong recommendation)* These do not necessarily include those aspects of postoperative care permitted by law to be performed by auxiliaries. If such follow-up care is not possible, the operating ophthalmologist must make arrangements before surgery to refer the patient to another ophthalmologist for postoperative care with the prior approval of the patient and the ophthalmologist. ^{232,1078} Comanagement is a relationship between an operating ophthalmologist and a nonoperating practitioner for shared responsibility in the postoperative care when the patient consents in writing to multiple providers, the services being performed are within the providers' respective scope of practice, and there is written agreement between the providers to share patient care. Transfer of care occurs when there is transfer of responsibility for a patient's care from one qualified health care provider operating within his or her scope of practice to another who also operates within his or her scope of practice.

The ophthalmologist who performs surgery has an obligation to inform patients about appropriate signs and symptoms of possible complications, eye protection, activities, medications, required visits, and details for access to emergency care. *(III, good quality, strong recommendation)* The ophthalmologist should also inform patients of their responsibility to follow advice and instructions provided during the postoperative phase and to notify the ophthalmologist promptly if problems occur. *(III, good quality, strong recommendation)* Patients should always have access to an ophthalmologist for appropriate care if serious problems arise. *(III, good quality, strong recommendation)*

Most ophthalmologists provide all postoperative care in their offices. Other members of a team of eye care professionals may also participate in the comanagement of postoperative care. The operating ophthalmologist is responsible to the patient for those aspects of postoperative care delegated to other eye care professionals.²³² Economic considerations should never influence the decision to comanage or the timing of a patient's transfer of care after surgery; such quid pro quo arrangements are unethical and often illegal.¹⁰⁷⁷ Any

delegation of a surgeon's postoperative responsibilities to another nonoperating practitioner and any payments to either party should be completely transparent to the patient and only done after obtaining the patient's informed consent in writing. Routine comanagement or transfer of care-referral arrangements are not appropriate. Instead, comanagement and transfer of care arrangements should be conducted pursuant to written patient-specific protocols. (See the Comprehensive Guidelines for the Co-Management of Ophthalmic Postoperative Care for detailed information.¹⁰⁷⁷)

Postoperative regimens of topically applied antibiotics, corticosteroids, NSAIDs, and oral analgesic agents vary among practitioners.¹⁰⁷⁹ There are no controlled investigations that establish optimal regimens for the use of topical agents. Therefore, it is the decision of the operating surgeon to use any or all of these products singly or in combination. Complications of postoperative medications include elevated IOP with corticosteroids and allergic reactions to antibiotics. Significant corneal reactions, including epithelial defects and stromal ulceration and melting, have rarely been reported for topical ocular NSAIDs.¹⁰⁸⁰⁻¹⁰⁸²

Postoperative Follow-up

The frequency of postoperative examinations is based on the goal of optimizing the outcome of surgery and swiftly recognizing and managing complications. This requires prompt and accurate diagnosis and treatment of complications of surgery, providing satisfactory optical correction, educating and supporting the patient, and reviewing postoperative instructions. Table 5 provides guidelines for follow-up based on consensus in the absence of evidence for optimal follow-up schedules. Prospective studies from the United Kingdom have reported that omitting an examination on the day after uncomplicated cataract surgery for the routine patient was associated with a low frequency of serious ocular complications.¹⁰⁸³⁻¹⁰⁸⁶

TABLE 5 POSTOPERATIVE FOLLOW-UP SCHEDULE

Patient Characteristics	First Visit	Subsequent Visits
Without high risks or signs or symptoms of possible complications following small-incision cataract surgery	Within 48 hours of surgery	Frequency and timing dependent on refraction, visual function, and medical condition of the eye
Functionally monocular; intraoperative complications; high risk of immediate postoperative complications, such as IOP spike	Within 24 hours of surgery	More frequent follow-up usually necessary

IOP = intraocular pressure

Patients should be instructed to contact the ophthalmologist promptly if they experience symptoms such as a significant reduction in vision, increasing pain, progressive redness, or periocular swelling, because these symptoms may indicate the onset of endophthalmitis. *(III, good quality, strong recommendation)*

In the absence of complications, the frequency and timing of subsequent postoperative visits depend largely on the size or configuration of the incision, the need to cut or remove sutures, and when refraction, visual function, and the medical condition of the eye are stabilized. More-frequent postoperative visits are generally indicated if unusual findings, symptoms, or complications occur. The patient should have ready access to the ophthalmologist's office to ask questions or seek care. *(III, good quality, strong recommendation)*

Components of each postoperative examination should include the following:

- Interval history, including use of postoperative medications, new symptoms, and selfassessment of vision
- Measurement of visual function (e.g., visual acuity, including pinhole testing or refraction when appropriate)

- Measurement of IOP
- Slit-lamp biomicroscopy
- Counseling/education for the patient or patient's caretaker
- Management plan

A dilated fundus examination is indicated if there is a reasonable suspicion or higher risk of posterior segment problems. In the absence of symptoms or surgical complications, no study has demonstrated that a dilated fundus examination results in earlier detection of retinal detachment. However, dilation is often critical in assessing anterior ocular concerns, such as capsular contracture or IOL malposition and other retinal issues, such as CME.

When postoperative visual improvement is less than anticipated, the ophthalmologist may perform additional diagnostic testing to evaluate the cause. For example, if maculopathy is suspected, OCT or fluorescein angiography would be appropriate to diagnose cystoid or diffuse macular edema, epiretinal membranes, or AMD. Likewise, corneal topography could help diagnose irregular corneal astigmatism. Automated visual fields may help diagnose a neuro-ophthalmic abnormality. Other testing may be conducted if appropriate.

A final refractive visit should be made to provide an accurate prescription for eyeglasses to allow for the patient's optimal visual function. *(III, good quality, strong recommendation)* The timing and frequency of refraction will depend on patient needs and the stability of the measurement. Sutures, if used, may be cut or removed by the ophthalmologist to reduce astigmatism. Optical correction can usually be prescribed between 1 and 4 weeks after small-incision cataract surgery¹⁰⁸⁷ and between 6 and 12 weeks after sutured large-incision cataract extraction surgery.

Posterior Capsular Opacification

Posterior capsular opacification often occurs following cataract surgery by any method and can cause a gradual decrease in visual function. In a comparative study, the incidence of PCO was significantly higher at 1 year in the manual ECCE group than in the phacoemulsification group.^{485,1088} The most common cause of PCO is proliferation and metaplasia of lens epithelial cells that remain in the capsular bag following cataract surgery.^{1089,1090}

The onset of PCO from the time of surgery varies.^{1091,1092} The frequency with which Nd:YAG laser posterior capsulotomy is performed also varies and has been reported in the range of 3% to 53% within 3 years.¹⁰⁹³ The Cataract PORT study reported a 19% incidence of PCO occurring within 4 months of cataract surgery.¹⁰⁶ More recently, well-designed clinical series with 3- to 5-year follow-up utilizing a sharp-edged optic design with either silicone or hydrophobic acrylic optics show posterior capsulotomy rates below 5%.¹⁰⁹⁴⁻¹⁰⁹⁷

Younger patients often have more significant rates of PCO following cataract surgery than older patients. A longitudinal study in Sweden found that at 10 years postoperatively 37% of patients under 65 at the time of surgery had been treated using Nd:YAG laser capsulotomy compared with 20% of the patients older than 65.¹⁰⁹⁸

Results from a meta-analysis provide information on the efficacy of different IOL materials and optic edge designs in preventing PCO.⁵³³ An analysis of 23 RCTs found that sharpedged hydrophobic acrylic IOLs and silicone IOLs had less risk of PCO and Nd:YAG laser capsulotomy than PMMA IOLs and hydrophilic acrylic (hydrogel) IOLs. A 2010 Cochrane systematic review found no significant differences in PCO development among different IOL materials (PMMA, hydrogel, hydrophobic acrylic, and silicone).¹⁰⁹⁹ However, hydrogel IOLs tended to have higher PCO scores and the silicone IOLs had lower PCO scores than the other IOL materials. This analysis found a significantly lower PCO score and Nd:YAG laser capsulotomy rate with sharp-edged versus round-edged IOLs. A 2013 systematic analysis of nine randomized controlled trials demonstrated higher PCO scores and Nd:YAG laser capsulotomy rates at 1 and 2 years postoperatively for sharp-edged hydrophilic lenses than for sharp-edged hydrophobic acrylic lenses.¹¹⁰⁰ However, one randomized trial indicated that the protective effect of the sharp-edged hydrophobic lens may only delay the effect of PCO compared with round-edged silicone and round-edged PMMA after 12 years of follow-up.¹¹⁰¹

Substantial evidence supports a lower PCO rate when the anterior capsulorrhexis completely overlaps the entire optic.¹¹⁰²⁻¹¹⁰⁴ However, capsulorrhexis may be a less important factor with single-piece foldable acrylic IOLs.¹⁰⁹⁸

Polishing of the anterior capsule has a variable effect on reducing PCO rates.¹¹⁰⁵⁻¹¹⁰⁷ However, anterior capsule fibrosis and contracture is more frequent with silicone than with acrylic optic materials, and anterior capsule polishing may reduce this postoperative phenomenon.^{1105,1106,1108} Anterior capsule contraction and anterior capsule opacification were found to be higher in an interrupted square-edge IOL versus a 360 continuous sharp-edge design.¹¹⁰⁹ No difference in PCO rates has been found with more prolonged administration of topical corticosteroids or topical NSAIDs.⁸⁸³⁻⁸⁸⁵

Another condition treated by Nd:YAG laser capsulotomy is capsular distension syndrome characterized by a milky fluid behind the lens optic and anterior displacement of the lens, resulting in a myopic refractive shift.

Posterior Nd:YAG laser capsulotomy is an effective surgical procedure to clear the visual pathway and restore visual function, and to improve contrast sensitivity.¹¹¹⁰ The indication for performing Nd:YAG laser capsulotomy is PCO consistent with an impairment of vision to a level that does not meet the patient's functional needs or that critically interferes with visualization of the fundus. The decision to perform capsulotomy should take into account the benefits and risks of the laser surgery. *(III, good quality, strong recommendation)* Posterior capsulotomy may be indicated earlier in patients with multifocal IOLs because of a greater functional impact of early PCO in low-contrast and glare conditions. Multifocal IOLs and early PCO both reduce contrast sensitivity. Laser posterior capsulotomy should not be performed prophylactically (i.e., when the capsule remains clear). *(III, good quality, strong recommendation)* Same-day bilateral Nd:YAG laser capsulotomy may be appropriate when indicated. The eye should be inflammation free and the IOL stable prior to performing Nd:YAG laser capsulotomy.¹¹⁰¹ *(III, good quality, strong recommendation)*

Complications of Nd:YAG laser capsulotomy include increased IOP,¹¹¹¹ retinal detachment, CME, corneal injury, iritis, vitritis, damage to the IOL, and dislocation of the IOL.¹¹¹² There have been case reports of macular hole formation^{1113,1114} and indolent endophthalmitis¹¹¹⁵ following Nd:YAG laser capsulotomy. A capsulotomy can complicate an IOL exchange. Axial myopia increases the risk of retinal detachment after Nd:YAG laser capsulotomy,¹¹¹⁶ as does pre-existing vitreoretinal disease, male gender, young age, vitreous prolapse into the anterior chamber, and spontaneous extension of the capsulotomy.¹¹¹⁷ Two case series reported a 0% to 0.4% incidence of retinal detachment 1 to 8 years following laser capsulotomies.^{705,1118} In one of these series, there were no retinal detachments in eyes with an axial length less than 24.0 mm.⁷⁰⁵ A case-control study found that, in the absence of a posterior capsule tear at the time of cataract surgery, subsequent Nd:YAG laser capsulotomy did not increase the risk of retinal detachment.¹¹¹⁹

In the absence of risk factors for IOP elevation, routine prophylaxis with ocular hypotensive agents at the time of capsulotomy is not consistently supported by the literature.^{1120,1121} In the presence of risk factors, such as pre-existing glaucoma, a variety of agents to lower IOP have demonstrated efficacy at blunting IOP elevation.¹¹²²⁻¹¹²⁷ Therefore, in high-risk patients, the surgeon should monitor the IOP in the early postoperative period. *(III, good quality, strong recommendation)* Treatment with topical corticosteroids, NSAIDs, or cycloplegic agents is dependent on the patient's risk factors and surgeon's preference.

Because retinal breaks or detachments are acute events that can occur weeks to years after laser capsulotomy, a routine dilated fundus examination is unlikely to detect retinal pathology that requires treatment in the absence of symptoms. Educating high-risk patients about the symptoms of retinal tears or detachment may facilitate early diagnosis.¹¹²⁸

PROVIDER AND SETTING

It is the unique role of the ophthalmologist who performs cataract surgery to confirm the presence of the cataract, determine the need for surgery, and formulate and carry out a treatment plan, including postoperative care.^{231,232} Diagnosis and management require medical expertise, surgical skills, and specialized diagnostic and surgical equipment. The ophthalmologist's training, clinical experience, and judgment are necessary to evaluate the medical, ocular, and psychosocial factors used to determine the appropriateness and timing of surgery. *(III, good quality, strong recommendation)* Cataract surgery, including use of the femtosecond laser, should be performed only by an appropriately trained ophthalmologist.¹¹²⁹ *(III, good quality, strong recommendation)*

While the performance of certain diagnostic procedures (e.g., measurement of IOP, refraction, biometry) may be delegated to appropriately trained personnel supervised by the ophthalmologist, interpretation of these procedures requires the clinical judgment of the ophthalmologist. *(III, good quality, strong recommendation)*

Nearly all cataract surgery is performed in an outpatient setting, which may be in a hospital-based outpatient department (HOPD) or freestanding ambulatory surgery center (ASC). A Cochrane review has concluded there is no difference in outcome or increased risk of postoperative complications between outpatient and inpatient cataract surgery.^{1130,1131}

The surgical facility should comply with local, state, and federal regulations and standards governing the particular setting of care. (*III, good quality, strong recommendation*) Inpatient surgery may be necessary if there is a need for complex anesthetic or surgical care, multiple procedures, or postoperative care requiring an acute-care setting.

COUNSELING AND REFERRAL

The patient should be informed preoperatively about the possibility of visual impairment continuing after cataract surgery and the potential for rehabilitation in such cases.¹¹³² (*III, good quality, strong recommendation*) More information on vision rehabilitation, including materials for patients, is available at <u>www.aao.org/smart-sight-low-vision</u>.

Appropriate referral to a specialist should be considered when the postoperative course does not proceed as expected or does not respond to standard therapy. Examples include persistent inflammation, nonresolving CME, or uncontrolled glaucoma.

SOCIOECONOMIC CONSIDERATIONS

Utilization of Cataract Surgery in the United States

In 2010, a total of 1.82 million cataract procedures were performed on Medicare beneficiaries who were not enrolled in health maintenance organizations. Using projections of population growth and distribution and current age, approximately 3.3 million surgeries will be performed in 2020 and 4.4 million cataract surgeries will be performed in 2030 among individuals aged 65 and older in the United States.¹¹³³ A longitudinal study of Americans 62 or older (n=8670 in 1998) estimated that the annual rate of cataract surgery was 5.3% for the period January 1, 1995 to December 31, 2002.¹¹³⁴ The study also found that the prevalence of unilateral pseudophakia increased from 7.6% in 1998 (n=8670) to 9.8% in 2002 (n=6199) and that the prevalence of bilateral pseudophakia increased from 10.5% in 1998 to 22.3% in 2002. Additionally, a 2014 Beaver Dam Eye Study concluded that the incidence of lens extraction has increased over the past 20 years in persons older than 65, particularly in those participants without any clinically significant lens opacity and in persons with visual acuity better than 20/40 at an examination as measured 5 years before lens extraction took place.¹¹³⁵

When assessed across populations residing in different states or metropolitan areas, there is some variation in the rate of cataract surgery, but these differences are relatively low compared with geographic variations observed with other surgical procedures. In one study, factors associated with a higher rate of cataract surgery were female gender, living in a more southerly latitude, a higher concentration of optometrists in a specific geographic area, and a higher allowed charge for cataract surgery.¹¹³⁶ A higher concentration of opthalmologists was not associated with a higher rate of cataract surgery. A decreased likelihood of undergoing cataract surgery was

reported among African American Medicare beneficiaries when compared with Caucasian Americans.¹¹³⁶ The rate of cataract surgery in the Veterans Health Administration (VHA) ranged between 105 and 134 per 10,000 VHA beneficiaries in 2007. These figures include surgery performed in VHA hospitals and surgical centers and those performed outside the VHA system but paid for by the VHA.¹¹³⁷

The utilization of cataract surgery in the United States has been found to be appropriate for the majority of cases studied. A study at 10 academic medical centers found that 2% of cataract surgeries performed were classified as inappropriate based on available records.¹¹³⁸ An inappropriate rating meant that the risks of surgery were deemed to exceed the potential benefits as rated by a physician review panel. The percentage deemed inappropriate in this study is consistent with earlier estimates of 2.5% by the 1993 U.S. General Accounting Office and a rate of 1.7% by the U.S. Inspector General.¹¹³⁸ Cataract surgery appropriateness ratings are comparable to the rate found for coronary artery bypass graft surgery (2.4% inappropriate) and lower than the rate for carotid endarterectomies (10.6% inappropriate).^{1139,1140} The criteria for appropriateness of cataract surgery were based on indicators of visual acuity and functional impairment, such as difficulty driving, reading, and other activities of daily living. The study did note that the recorded information varied, particularly on functional impairment, and increased attention to documenting specific functional impairments is appropriate. A study of Medicare beneficiaries in 13 large areas in the United States found that cataract surgery ranked among procedures with the least variation in use.¹¹⁴¹ Also, second-opinion programs implemented for cataract surgery have not lowered surgical rates, because the initial recommendations for surgery were found to be appropriate.

The validity of the appropriateness methodology used to evaluate the utilization of cataract surgery was supported by a study of the association between the appropriateness rating and postoperative visual acuity.¹¹⁴² More recent studies have added a self-reported visual function questionnaire.¹¹⁴³ For a sample of 768 patients, 89% of those who had surgeries rated as appropriate were found to have a visual acuity improvement of at least 2 lines postoperatively. For the group that had surgeries rated as inappropriate, 36% had a visual acuity improvement of at least 2 lines postoperatively. This finding suggests that the functional benefit of cataract surgery can be unpredictable in some individuals and cannot always be accurately predicted preoperatively.

Cost of Cataract Surgery in the United States

Since the first freestanding ASCs were started in the early 1970s, there has been a significant movement of eye surgery from HOPDs to ASCs. According to the Medicare Payment Advisory Commission, ASCs may offer more convenient locations, shorter waiting times, and easier scheduling for patients compared with HOPDs.¹¹⁴⁴ In 2009, 69% of cataract surgery with IOL insertion was performed in ASCs.¹¹⁴⁴ Medicare payments to ASCs for all types of surgery totaled \$3.2 billion or \$102 per Medicare beneficiary in 2009.¹¹⁴⁴ Cataract surgery with IOL implantation was the most frequently performed surgical service in ASCs in 2009, accounting for 18% of the volume.¹¹⁴⁴ Eye procedures accounted for 46% of total Medicare ASC payments. In 2010, the Medicare facility payment to an ASC for cataract surgery was \$961.34 and \$1637.15 for an HOPD. Patients' coinsurance payments are lower in an ASC facility at \$192 compared with \$327 in HOPDs. Cataract surgery with IOL implantation accounted for 40% of Medicare eye-procedure payments.

The 2006 National Survey of Ambulatory Surgery by the Centers for Disease Control and Prevention's National Center for Health Statistics found that the total operating room times (including surgery and turnover) were over 50% longer in HOPDs.¹¹⁴⁵

In 2010, the national average surgeon reimbursement for cataract surgery/IOL implantation was \$713.86. Since the institution of the Resource-Based Relative Value Scale in 1992, there has been a 40% decrease in this fee, not adjusted for inflation. The total cost for cataract surgery/IOL implantation for a Medicare beneficiary in the ASC setting is about \$2335 for 2010. This includes the initial office evaluation as well as refraction, biometry, surgical facility fee, surgeon and anesthesia professional fees, and medications. The Medicare patient's copayment is approximately \$450. Typically, the facility fee for cataract surgery/IOL implantation will be

approximately 50% higher in the HOPD setting. In the final 2016 Medicare Physician Fee Schedule calculations, the cataract code 66984 practice expense Relative Value Units was calculated at 8.98 and the total Relative Value Unit at 18.11, with a conversion factor of 35.8043. Overall, this represents a 1% reduction from 2015 of \$650.40 to \$642.39 with current consensus that CMS reimbursement for cataract surgery will continue to decline in the future.

Cataract surgery with IOL implantation was the most frequently performed operation and the single largest expenditure for any Part B procedure in the Medicare program, calculated by Part B procedure codes based on allowed charges. In 2009 (latest year available), payment for cataract was \$2.1 billion, which is 1.8% of total allowed charges.¹¹⁴⁶

Cost-Effectiveness of Cataract Surgery

Methods to evaluate whether the cost of a medical intervention is a good use of available resources include cost-effectiveness or cost-utility calculations. The quality-adjusted life year (QALY) is a measure of a disease burden, including both the quality and the quantity of life lived. It is used in assessing the monetary value of a medical intervention. The QALY is based on the number of years of life that would be added by the intervention. Each year in perfect health is assigned the value of 1.0 down to a value of 0.0 for death. If the extra years would not be lived in full health, for example, if the patient would be blind, lose a limb, or have to use a wheelchair, then the extra life-years are given a value between 0 and 1 to account for this. The QALY is used in cost-utility analysis to calculate the ratio of cost to QALY improvement and compare the value of interventions of different health conditions. Lower cost per QALY represents a more cost-effective medical intervention.

The hypothetical cost per QALY gained for cataract surgery in one eye was estimated at US\$4500 in Sweden¹¹⁴⁷ and US\$2023 in the United States.¹¹⁴⁸ In a U.S. study done in 2003, the estimated cost per QALY gained for cataract surgery in the second eye was US\$2727.¹¹⁴⁹ These calculations compare favorably with other medical treatments. Single-vessel coronary artery bypass surgery for disease of the left anterior descending artery costs \$7000/QALY, treatment of arterial hypertension costs \$58,000/QALY, and ambulatory peritoneal dialysis costs \$90,000/QALY. A review assessed the 2012 cost utility of cataract surgery in the United States and compared 2012 cost-utility data with those from 2000. The authors measured patient value gain in QALYs and percent gain in quality of life as well as the cost-utility ratio using the dollars expended per QALY gained. Their results showed first-eye cataract surgery conferred 1.6212 QALYs over the 13-year model, a 20.8% quality-of-life gain. Bilateral cataract surgery conferred 2.8152 QALYs over 13 years, a 36.2% improvement in quality of life. The direct ophthalmic medical cost for unilateral cataract surgery in 2012 United States nominal dollars was \$2653, an inflation-adjusted 34.2% less than in 2000 and 85% less than in 1985. Their conclusion was that cataract surgery in 2012 greatly improved quality of life and was highly cost-effective. Initial cataract surgery yielded an extraordinary 4567% financial return on investment to society over the 13-year model.¹¹⁵⁰

Medical technology is valuable if the benefits of medical advances exceed the costs. One study analyzed technological advances in treatment of five conditions, including cataracts.¹¹⁵¹ In four of the conditions—heart attacks, low-birthweight infants, depression, and cataracts—the estimated benefit of technological changes is much greater than the cost. The medical advances in cataract surgery from the late 1960s to present have resulted in increased safety and improved outcomes. One estimate of the present benefit value of cataract surgery is \$95,000, which is far greater than the cost of treatment at \$2300 to \$3000. This value compares favorably with the estimated present values for treatments of other conditions: \$20,000 for breast cancer, \$6000 for depression, \$240,000 for a low birthweight infant, and \$70,000 for a heart attack. These various analyses suggest that on a relative basis, cataract surgery is very cost-effective and beneficial for the patient and society.¹¹⁵² The cost-effectiveness of new-technology IOLs, such as toric IOLs, was superior to the lifetime cost of eyeglasses.¹¹⁵²

Cost Considerations

Cataract surgery is the most cost-effective procedure performed in medicine today.^{1150,1153,1154} Immediate sequential bilateral cataract surgery may be more cost-effective than delayed sequential bilateral cataract surgery.¹⁰⁶⁹ With large projected increases in the elderly population worldwide, the significant cost burden of cataract surgery will continue to increase for every global medical system. Because of the societal imperative that cataract surgery be both safe and cost-effective, it is important to evaluate unproven and potentially unnecessary practices based on carefully monitored studies of surgical outcomes. For example, one paper evaluated a policy and procedural approach to a safe and effective use of multidose eye drops for cataract surgical patients and the cost benefit of multidose eye drops.¹¹⁵⁵ In many countries, sterilization and aseptic protocols for ophthalmic surgery have been arbitrarily defined by national regulatory agencies. Many of these measures originated from studies in nonophthalmic specialties and may not be specifically validated for ophthalmic surgery, where the source of most infections is the patient's own eyelid and external ocular flora. For example, using infection-control protocols based on continuous monitoring of outcomes data, one eye hospital in India reported an endophthalmitis rate of only 0.09% (0.02% of phacoemulsification cases) in more than 42,000 consecutive cataract surgeries using short-cycle steam sterilization and continuous reuse of gowns, gloves, surgical tubing, and irrigating solutions.³⁴⁹ Costlier new infection-control measures for ophthalmic surgery should not be arbitrarily imposed by regulatory agencies without evidence-based support. (III, good quality, strong recommendation)

New technology in cataract surgery, including advanced IOLs and femtosecond lasers, represent an increased out-of-pocket expense for cataract patients. Currently, these technologies are used in a small portion of total cases, but their use is expected to increase over the coming years. Although some benefits of new technology are clear, others remain ambiguous. Their use does add to the patient's economic health care burden.⁴⁹⁴

Physician Quality Reporting System

The Physician Quality Reporting System program, initially launched by the Centers for Medicare and Medicaid Services in July 2007, encourages quality improvement through the use of clinical performance measures on a variety of clinical conditions.

The latest information on the Physician Quality Reporting System is available at www.aao.org/pqrs.

APPENDIX 1. QUALITY OF OPHTHALMIC CARE CORE CRITERIA

Providing quality care is the physician's foremost ethical obligation, and is the basis of public trust in physicians. AMA Board of Trustees, 1986

Quality ophthalmic care is provided in a manner and with the skill that is consistent with the best interests of the patient. The discussion that follows characterizes the core elements of such care.

The ophthalmologist is first and foremost a physician. As such, the ophthalmologist demonstrates compassion and concern for the individual, and utilizes the science and art of medicine to help alleviate patient fear and suffering. The ophthalmologist strives to develop and maintain clinical skills at the highest feasible level, consistent with the needs of patients, through training and continuing education. The ophthalmologist evaluates those skills and medical knowledge in relation to the needs of the patient and responds accordingly. The ophthalmologist also ensures that needy patients receive necessary care directly or through referral to appropriate persons and facilities that will provide such care, and he or she supports activities that promote health and prevent disease and disability.

The ophthalmologist recognizes that disease places patients in a disadvantaged, dependent state. The ophthalmologist respects the dignity and integrity of his or her patients, and does not exploit their vulnerability.

Quality ophthalmic care has the following optimal attributes, among others.

- The essence of quality care is a meaningful partnership relationship between patient and physician. The ophthalmologist strives to communicate effectively with his or her patients, listening carefully to their needs and concerns. In turn, the ophthalmologist educates his or her patients about the nature and prognosis of their condition and about proper and appropriate therapeutic modalities. This is to ensure their meaningful participation (appropriate to their unique physical, intellectual and emotional state) in decisions affecting their management and care, to improve their motivation and compliance with the agreed plan of treatment, and to help alleviate their fears and concerns.
- The ophthalmologist uses his or her best judgment in choosing and timing appropriate diagnostic and therapeutic modalities as well as the frequency of evaluation and follow-up, with due regard to the urgency and nature of the patient's condition and unique needs and desires.
- The ophthalmologist carries out only those procedures for which he or she is adequately trained, experienced and competent, or, when necessary, is assisted by someone who is, depending on the urgency of the problem and availability and accessibility of alternative providers.
- Patients are assured access to, and continuity of, needed and appropriate ophthalmic care, which can be described as follows.
 - The ophthalmologist treats patients with due regard to timeliness, appropriateness, and his or her own ability to provide such care.
 - The operating ophthalmologist makes adequate provision for appropriate pre- and postoperative patient care.
 - When the ophthalmologist is unavailable for his or her patient, he or she provides appropriate alternate ophthalmic care, with adequate mechanisms for informing patients of the existence of such care and procedures for obtaining it.
 - The ophthalmologist refers patients to other ophthalmologists and eye care providers based on the timeliness and appropriateness of such referral, the patient's needs, the competence and qualifications of the person to whom the referral is made, and access and availability.
 - The ophthalmologist seeks appropriate consultation with due regard to the nature of the ocular or other medical or surgical problem. Consultants are suggested for their skill, competence, and accessibility. They receive as complete and accurate an accounting of the problem as necessary to provide efficient and effective advice or intervention, and in turn respond in an adequate and timely manner.

- The ophthalmologist maintains complete and accurate medical records.
- On appropriate request, the ophthalmologist provides a full and accurate rendering of the patient's records in his or her possession.
- The ophthalmologist reviews the results of consultations and laboratory tests in a timely and effective manner and takes appropriate actions.
- The ophthalmologist and those who assist in providing care identify themselves and their profession.
- For patients whose conditions fail to respond to treatment and for whom further treatment is unavailable, the ophthalmologist provides proper professional support, counseling, rehabilitative and social services, and referral as appropriate and accessible.
- Prior to therapeutic or invasive diagnostic procedures, the ophthalmologist becomes appropriately conversant with the patient's condition by collecting pertinent historical information and performing relevant preoperative examinations. Additionally, he or she enables the patient to reach a fully informed decision by providing an accurate and truthful explanation of the diagnosis; the nature, purpose, risks, benefits, and probability of success of the proposed treatment and of alternative treatment; and the risks and benefits of no treatment.
- The ophthalmologist adopts new technology (e.g., drugs, devices, surgical techniques) in judicious fashion, appropriate to the cost and potential benefit relative to existing alternatives and to its demonstrated safety and efficacy.
- The ophthalmologist enhances the quality of care he or she provides by periodically reviewing and assessing his or her personal performance in relation to established standards, and by revising or altering his or her practices and techniques appropriately.
- The ophthalmologist improves ophthalmic care by communicating to colleagues, through appropriate professional channels, knowledge gained through clinical research and practice. This includes alerting colleagues of instances of unusual or unexpected rates of complications and problems related to new drugs, devices or procedures.
- The ophthalmologist provides care in suitably staffed and equipped facilities adequate to deal with potential ocular and systemic complications requiring immediate attention.
- The ophthalmologist also provides ophthalmic care in a manner that is cost effective without unacceptably compromising accepted standards of quality.

Reviewed by: Council Approved by: Board of Trustees October 12, 1988

2nd Printing: January 1991 3rd Printing: August 2001 4th Printing: July 2005

APPENDIX 2. INTERNATIONAL STATISTICAL CLASSIFICATION OF DISEASES AND RELATED HEALTH PROBLEMS (ICD) CODES

Cataract, which includes entities with the following ICD-10 classifications:

	ICD-10 CM	
Cortical ARC	H25.01-	
Anterior subcapsular polar ARC	H25.03-	
Posterior subcapsular polar ARC	H25.04-	
Other age-related incipient cataract, right eye (coronary; punctate ARC, water clefts)	H25.09-	
Age-related nuclear cataract	H25.1-	
ARC, morgagnian type, (hypermature cataract)	H25.2-	
Combined forms of ARC	H25.81-	
Total or mature cataract	H25.89 Other ARC	
ARC; pseudoexfoliation of lens capsule	H25.89 Other ARC	

ARC = age-related cataract; ICD = International Classification of Diseases; CM = Clinical Modification used in the United States; (-) = 1, right eye; 2, left eye; 3, bilateral

Additional information:

- For bilateral sites, the final character of the codes indicates laterality. If no bilateral code is provided and the condition is bilateral, separate codes for both the left and right side should be assigned. Unspecified codes should be used only when there is no other code option available.
- When the diagnosis code specifies laterality, regardless of which digit it is found in (i.e., 4th digit, 5th digit, or 6th digit):
 - Right is always 1
 - Left is always 2
 - Bilateral is always 3

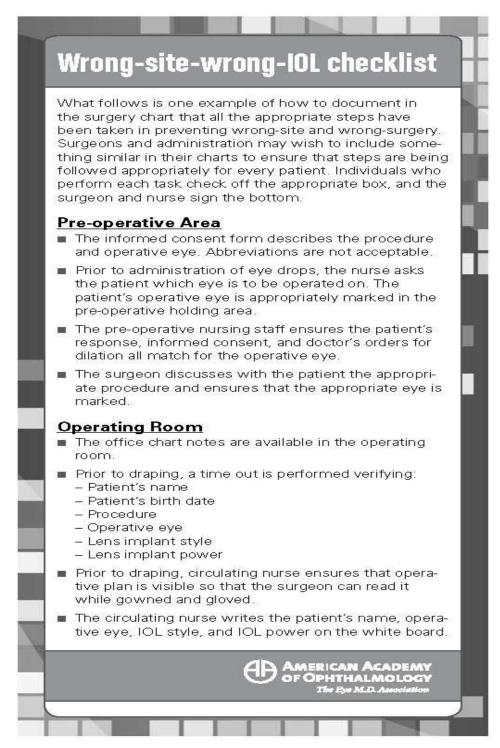
APPENDIX 3. NUTRITION AND CATARACTS

Most randomized controlled studies of nutritional supplements have not demonstrated a beneficial effect of high-dose supplements on cataract development or progression (Table A3-1). Observational studies of nutrition and cataract with more than 10,000 participants (Table A3-2) have reported either no association¹¹⁵⁶ or a reduced risk of cataract.^{208-210,1157-1159}

Study	Date Published	Sample Size	Results
Beta Carotene			
Alpha-tocopherol, beta-carotene study ¹¹⁶⁰	1998	28,934 men	No effect of beta-carotene on risk for cataract surgery
Physicians' Health Study ¹¹⁶¹	2003	22,071	No effect of treatment on cataract development
			For current smokers at baseline, supplementation appeared to lessen their excess risk by about one-quarter
Women's Health Study ¹¹⁶²	2004	36,735 women	No effect of treatment on cataract development
Lutein/Zeaxanthin			
Age-Related Eye Disease Study 2 (AREDS2) ²⁰²	2013	3159	No effect on rate of cataract surgery, development of posterior subcapsular or cortical cataracts, or vision loss
Multivitamin/Mineral			
Linxian Cataract ¹¹⁶³	1993	2141	36% reduction in development of nuclear cataracts in a nutritionally deficient population
Nutritional Supplements and Age-Related Cataract ²⁰⁶	2008	1020	34% reduction in nuclear cataract; twofold increased risk of posterior subcapsular cataract
Physicians' Health Study II ²⁰⁷	2014	11,497 men	Long-term multivitamin use moderately decreased the risk (9% lower) of nuclear cataract
Omega-3 Long-Chain Polyunsaturated	l Fatty Acids (L	CPUFAs)	
Age-Related Eye Disease Study 2 (AREDS2) ^{202,1164}	2013	3159	No effect on cataract progression
Riboflavin/Niacin			
Linxian Cataract ¹¹⁶³	1993	3249	44% reduction in development of nuclear cataracts in a nutritionally deficient population
Selenium			
Selenium and Vitamin E Cancer Prevention Trial (SELECT) Eye Endpoints Study ²⁰¹	2015	11,267 men	No effect of selenium on development of cataract
Vitamin C and E			
Physicians' Health Study II ¹¹⁶⁵	2010	11,545 men	No effect on cataract development of C alone, E alone, or C and E

TABLE A3-1 SUMMARY OF RANDOMIZED CONTROLLED TRIALS OF NUTRITIONAL SUPPLEMENTS AND CATARACTS

TABLE A3-1	SUMMARY OF RANDOMIZED CONTROLLED TRIALS OF NUTRITIONAL SUPPLEMENTS AND CATARACTS
	(CONTINUED)


Study	Date Published	Sample Size	Results
Vitamin C, E, and Beta-Carotene			
Age-Related Eye Disease Study ¹¹⁶⁶	2001	4629	No effect of treatment on the development or progression of cataracts
Antioxidants in Prevention of Cataracts Study ¹¹⁶⁷	2006	798	No effect of treatment on progression of cataracts
Roche European American Cataract Trial ¹¹⁶⁸	2002	297	No effect of treatment on the progression of cataracts in the U.K. group; small positive treatment effect in U.S. participants
Vitamin E			
Alpha-tocopherol, beta-carotene study ¹¹⁶⁰	1998	28,934	No effect of vitamin E on risk for cataract surgery
SELECT Eye Endpoints Study ²⁰¹	2015	11,267 men	No effect of vitamin E on development of cataract
Vitamin E, Cataract and Age- Related Maculopathy Trial ¹¹⁶⁹	2004	1193	No effect of treatment on the development or progression of cataracts
Women's Health Study ¹¹⁷⁰	2008	37,675 women	No effect of vitamin E on development of cataract (600 IU QOD)
Vitamin E and Beta-Carotene			
Alpha-tocopherol, beta-carotene Cancer Prevention Study ¹¹⁷¹	1997	1828	No effect of treatment on the development or progression of cataracts

Study	Date Published	Type of Study	Sample Size	Measure	Results
Dietary Antioxidants					
Swedish Mammog- raphy Cohort ²¹¹	2014	Prospective cohort	30,607 women	Dietary intake	Antioxidants in diet (primarily fruits and vegetables, whole grains, coffee): 12.8% lower risk for cataract extraction in highest quintile of antioxidant intake compared with those in lowest quintile
Dietary Intake					
European Prospec- tive Investigation into Cancer and Nutrition ²¹⁰	2011	Prospective cohort	27,670	Dietary intake	Progressive decrease in risk of cataract in high meat eaters to low meat eaters, fish eaters (participants who ate fish but not meat), vegetarians, and vegans
Vegetarianism					
Oxford arm of Euro- pean Prospective Investigation into Cancer and Nutrition (EPIC-Oxford) ²¹⁰	2011	Prospective cohort	27,670	Dietary intake	Vegetarians at lower risk of cataracts than meat eaters
Fat Intake					
Nurses' Health Study ²⁰⁹	2005	Prospective cohort	71,083 women	Dietary intake	Reduced risk of cataract extraction with higher intake of long-chain fatty acids and fish

 TABLE A3-2
 Summary of Observational Studies of Nutrition and Cataracts (n>10,000) (continued)

Study	Date Published	Type of Study	Sample Size	Measure	Results
Fruit and Vegetable Intal	<e< td=""><td></td><td></td><td></td><td></td></e<>				
Women's Health Study ²⁰⁸	2005	Prospective cohort	35,724 women	Dietary intake	Reduced risk of cataracts associated with higher intakes of fruits and vegetables
Lutein/Zeaxanthin					
Health Profes- sionals Follow-up Study ¹¹⁷²	1999	Prospective cohort	36,644 men	Dietary intake	Modestly lower risk of cataract extraction in men with higher dietary intake of lutein/zeaxanthin
Multivitamin Supplement					
Nurses' Health Study ¹¹⁵⁶	1992	Prospective cohort	50,828 women	Supplement use	No association with multivitamin use and cataract extraction
Nurses' Health Study ¹¹⁷³	1999	Prospective cohort	73,956 women	Supplement use	Little overall benefit for risk of cataract extraction in those taking for ≥10 years
Physicians' Health Study ¹¹⁵⁷	1994	Prospective cohort	17,744 men	Supplement use	Reduced risk of cataracts
Cohort of Swedish men ¹⁹⁹	2013	Prospective cohort	31,120 men	Supplement use	Not associated with cataract risk
Riboflavin/Niacin					
Nurses' Health Study ¹¹⁵⁶	1992	Prospective cohort	50,828 women	Total dietary intake	No association
Vitamin C					
Nurses' Health Study ¹¹⁷³	1999	Prospective cohort	73,956 women	Supplement use	No significant association with risk for cataract extraction, used continuously for ≥10 years
Japan Public Health Center-Based Prospective Study ¹¹⁵⁹	2007	Prospective cohort	35,186	Total dietary intake	Reduced incidence of cataract diagnosis or extraction with higher vitamin C intake
Swedish Mammog- raphy Cohort ²⁰⁰	2010	Prospective cohort	24,593 women	Supplement use	25% increased risk for cataract extraction for vitamin C supplement users
Cohort of Swedish men ¹⁹⁹	2013	Prospective cohort	31,120 men	Supplement use	21% increased risk of cataract
Twins U.K. Cohort ²⁰³	2016	Prospective cohort	2054 white female twins	Total dietary intake	Reduced risk of cataracts associated with vitamin C intake over 10 years
Vitamin E					
Nurses' Health Study ¹¹⁵⁶	1992	Prospective cohort	50,828 women	Total dietary intake and supplement	No association
Cohort of Swedish men ¹⁹⁹	2013	Prospective cohort	31,120 men	Supplement use	59% increased risk of cataract

APPENDIX 4. WRONG-SITE WRONG-IOL SURGERY CHECKLIST

This checklist may be downloaded from the Patient Safety Statement, Recommendations of American Academy of Ophthalmology Wrong-site Task Force (revised 2014), available at <u>www.aao.org/patient-safety-statement/recommendations-of-american-academy-ophthalmology-</u>.

APPENDIX 5. LITERATURE SEARCHES FOR THIS PPP

Literature searches of the PubMed and Cochrane databases were conducted in July 2015; the search strategies were as follows. Specific limited update searches were conducted after July 2015.

PubMed Searches (limits: English, Publication date 1/10/11 – 7/13/2015)

Systematic Reviews: "cataract extraction"[MeSH]. 78 references

Clinical Study Category: "cataract extraction" [MeSH] diagnosis; narrow. 0 references

Clinical Study Category: "cataract extraction"[MeSH] therapy; narrow, specific search. 2 references

(endophthalmitis[MeSH]) AND ("cataract extraction"[MeSH]). 205 references

Corneal Transplantation/Penetrating Keratoplasty:

("cataract extraction"[MeSH]) AND (Keratoplasty, Penetrating [MeSH]). 33 references ("cataract extraction"[MeSH] AND ("corneal transplantation"[MeSH]). 98 references ("cataract extraction"[MeSH]) AND ("Endothelial Keratoplasty" OR DSAEK OR DSEK OR DMEK OR DLEK OR "posterior lamellar keratoplasty"). 71 references

Risk Factors:

("cataract/etiology"[MeSH]) AND ("risk factors"[MeSH]). 123 references ("cataract/epidemiology"[MeSH]) AND ("risk factors"[MeSH]). 117 references ("cataract/ethnology"[MeSH]) AND ("risk factors"[MeSH]). 5 references

"Cataract/prevention and control"[MAJR]. 113 references

("Cataract/epidemiology"[MeSH]) AND (Prevalence[MeSH]). 126 references

Rate – Appropriateness:

(Cataract Extraction/statistics & numerical data[MeSH Subheading]) AND (appropriate*[Title/Abstract]). 10 references (Cataract Extraction[MeSH]) AND (appropriateness[Title/Abstract]). 2 references

Visual Function and Quality of Life (Note: This overlaps with the Outcomes search, which includes Visual Acuity [MeSH].): ("cataract extraction"[MeSH]) AND ("Quality of Life"[MeSH]). 73 references

("cataract extraction"[MeSH]) AND ("Activities of Daily Living"[MeSH]). 21 references

("cataract extraction"[MeSH]) AND ("Disability Evaluation"[MeSH]). 10 references

("cataract extraction"[MeSH]) AND ("Automobile Driving"[MeSH]). 5 references

("cataract extraction"[MeSH]) AND (depression[MeSH]). 6 references

("cataract extraction"[MeSH]) AND (anxiety[MeSH]). 5 references

("cataract extraction"[MeSH]) AND ("stress, Psychological"[MeSH]). 1 reference

("cataract extraction"[MeSH]) AND ("accidental falls"[MeSH]). 9 references

Evaluation of Visual Impairment:

(cataract/diagnosis[MeSH]) AND ("visual acuity"[MeSH]). 125 references (cataract/diagnosis[MeSH]) AND ("contrast sensitivity"[MeSH]). 6 references (cataract/diagnosis[MeSH]) AND ("vision tests"[MeSH]). 134 references (cataract/diagnosis[MeSH]) AND (Questionnaires[MeSH). 21 references (cataract[MeSH]) AND (Questionnaires[MeSH) AND ("sickness impact profile"[MeSH]). 27 references

Supplemental Ophthalmic Testing:

(cataract/ultrasonography[MeSH]). 18 references

((cataract[MeSH]) OR ("cataract extraction"[MeSH])) AND ("potential vision"[tw]). 0 references

((cataract[MeSH]) OR ("cataract extraction"[MeSH])) AND ("ocular wavefront"[tw]). 4 references

((cataract[MeSH]) OR ("cataract extraction"[MeSH])) AND ("corneal topography"[tw]). 120 references

((cataract[MeSH]) OR ("cataract extraction"[MeSH])) AND ("potential acuity"[tw]). 0 references

((cataract[MeSH]) OR ("cataract extraction"[MeSH])) AND ("near card"[tw]). 1 reference

((cataract[MeSH]) OR ("cataract extraction"[MeSH])) AND ((glare disab*[tw]) OR (glare test*[tw])). 4 references

((cataract[MeSH]) OR ("cataract extraction"[MeSH])) AND ("scanning laser"[tw]). 0 references

P68

((cataract[MeSH]) OR ("cataract extraction"[MeSH])) AND ("laser interferometer"[tw]). 0 references ((cataract[MeSH]) OR ("cataract extraction"[MeSH])) AND ("fluorescein angiography"[MeSH]). 42 references ((cataract[MeSH]) OR ("cataract extraction"[MeSH])) AND ("Tomography, Optical Coherence"[MAJR]). 94 references ((cataract[MeSH]) OR ("cataract extraction"[MeSH])) AND ("corneal pachymetry"[tw]). 38 references ((cataract[MeSH]) OR ("cataract extraction"[MeSH])) AND (specular microscop*[tw]). 29 references ((cataract[MeSH]) OR ("cataract extraction"[MeSH])) AND (specular microscop*[tw]). 29 references ((cataract[MeSH]) OR ("cataract extraction"[MeSH])) AND (specular microscop*[tw]). 1 references

Nonsurgical Management: Additional limit: Human

("cataract/chemically induced"[MeSH]) AND (corticosteroid*[Title/Abstract] OR steroid*[Title/Abstract] OR glucocorticoid*[Title/Abstract] OR glucosteroid*[Title/Abstract]). 29 references (cataract[MeSH]) AND (smoking[MeSH]). 14 references (cataract[MeSH]) AND ("dietary supplements"[MeSH]). 18 references (cataract[MeSH]) AND (vitamins[MeSH]). 16 references (cataract[MeSH]) AND (ottamins[MeSH]). 16 references (cataract[MeSH]) AND (antioxidants[MeSH]). 65 references

Preoperative Medical Evaluation:

(("cataract extraction"[MeSH]) OR (cataract[MeSH])) AND ("Diagnostic Tests, Routine"[MeSH]). 3 references

Biometry and Intraocular Lens Power Calculation:

((cataract[MeSH]) OR ("cataract extraction"[MeSH])) AND (Biometry[MeSH]). 175 references ((cataract[MesH]) OR ("cataract extraction"[MeSH])) AND ("intraocular lens"[Title/Abstract] AND calculat*[Title/Abstract]). 164 references

Anesthesia:

(Anesthesia[MeSH]) AND ("cataract extraction"[MeSH]). 94 references

TASS (Toxic anterior segment syndrome):

"toxic anterior segment syndrome". 41 references

Surgical Techniques:

(incision[Title/Abstract]) OR microincision[Title/Abstract]) AND ("cataract surgery"[Title/Abstract]). 293 references ("cataract extraction/methods"[MeSH]) AND ("Surgical Procedures, Minimally Invasive"[MeSH]). 0 references ("cataract surgery"[Title/Abstract]) AND (femtosecond[Title/Abstract]). 167 references

Optical & Refractive Considerations of Cataract Surgery (Note: There was a separate search for presbyopia-correcting IOLs, which were also discussed under the Second Eye Surgery section.):

("cataract extraction"[MeSH]) AND (Lenses, Intraocular[MeSH]) AND (("presbyopia-correcting"[Title/Abstract]) OR (aspheric[Title/Abstract]) OR (toric[Title/Abstract]) OR (accommodative[Title/Abstract]) OR (multifocal [Title/Abstract]) OR (dynamic[Title/Abstract])). 257 references

Outcomes:

("cataract extraction"[MAJR]) AND ("visual acuity"[MAJR]). 278 references ("cataract extraction"[MeSH]) AND ("Treatment Outcome"[MAJR]). 1 reference ("Outcome Assessment (Health Care)"[MAJR]) AND ("cataract extraction"[MeSH]). 19 references

Complications of Surgery & Complications of IOLs:

("cataract extraction"[MAJR]) AND ("Postoperative Complications"[MAJR]) AND ("Retrospective Studies"[MeSH]). 90 references

("cataract extraction"[MAJR]) AND ("Intraoperative Complications"[MAJR]) AND ("Retrospective Studies"[MeSH]). 26 references

("cataract extraction/adverse effects"[MAJR]) AND ("retrospective studies"[MeSH]). 69 references

("lenses, intraocular/adverse effects"[MeSH]) AND (cataract[tw] OR cataracts[tw]). 31 references

("lenses, intraocular"[MAJR]) AND ("Postoperative Complications"[MAJR) AND (cataract[tw] OR cataracts[tw]). 60 references

("lenses, intraocular"[MAJR]) AND ("Intraoperative Complications"[MAJR) AND (cataract[tw]). 4 references

((lens implantation, intraocular/adverse effects[MeSH]) OR (lens capsule, crystalline/injuries[MeSH])) AND (cataract[tw] OR cataracts[tw]). 83 references

Ocular Comorbidities:

("cataract extraction"[MeSH]) AND (comorbidity[MeSH]). 19 references ("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND (Amblyopia[MeSH]). 2 references ("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND (Uveitis[MeSH]). 10 references ("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ("Diabetic Retinopathy"[MeSH]). 18 references ("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ("Macular Degeneration"[MeSH]). 26 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND (Glaucoma[MeSH]). 86 references ("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ("Exfoliation Syndrome"[MeSH]). 19 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ("Retinopathy of Prematurity"[MeSH]). 0 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND (Fuchs*[Title/Abstract]) AND (dystrophy[Title/Abstract]). 7 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND (("cloudy cornea"[Title/Abstract]) OR ("cloudy corneas"[Title/Abstract])). 0 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND (cloud*[Title/Abstract]) AND (cornea*[Title/Abstract]). 0 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ((miotic[Title/Abstract] OR (miosis[Title/Abstract])) AND (pupil[Title/Abstract]). 0 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND (deep*[Title/Abstract]) AND (set[Title/Abstract]). 0 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND (brow[Title/Abstract]). 0 references ("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND (narrow[Title/Abstract]) AND ((lid[Title/Abstract]) OR (eyelid[Title/Abstract])). 0 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ((high[Title/Abstract]) OR (highly[Title/Abstract])) AND (myop*[Title/Abstract]). 4 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ((high[Title/Abstract]) OR (highly[Title/Abstract])) AND (hyperopi*[Title/Abstract]). 3 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND (scleral[Title/Abstract]) AND (buckling[Title/Abstract]). 0 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ("posterior synechiae"[Title/Abstract]). 1 reference

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ("posterior polar"[Title/Abstract]). 3 references ("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND (brunescent[Title/Abstract]) AND (nuclear[Title/Abstract]). 0 reference

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ("pars plana"[Title/Abstract]). 12 references ("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ("Filtering Surgery"[MeSH]) AND (glaucoma/surgery[MeSH]). 38 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ("Filtering Surgery"[MeSH]) AND (glaucoma/surgery[MeSH]) AND (filt*[Title/Abstract]) AND (glaucoma[Title/Abstract]). 1 reference

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ("Filtering Surgery"[MeSH]) AND (glaucoma/surgery[MeSH]) AND ("glaucoma filtration"[Title/Abstract]). 0 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ("Corneal Transplantation"[MeSH]) AND ("penetrating keratoplasty"[Title/Abstract). 6 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ("Refractive Surgical Procedures"[MeSH]) AND (keratorefractive[Title/Abstract]). 0 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ((vitreoretinal[Title/Abstract]) OR (vitrectomy[tw])). 26 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ("anterior microphthalmos"[Title/Abstract]). 0 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ("relative anterior"[Title/Abstract]). 0 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ("shallow anterior"[Title/Abstract]). 0 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ("prostatic hypertrophy"[Title/Abstract]). 0 references

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND ("alpha-1a"[Title/Abstract]). 0 references ("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND (("white cataract"[Title/Abstract]) OR ("mature cortical"[Title/Abstract])). 1 reference

("cataract extraction"[MeSH]) AND (cataract/complications[MeSH]) AND (zon*[Title/Abstract]) AND ((lax*[Title/Abstract])) OR (dehiscen*[Title/Abstract])). 4 references

Systemic Comorbidities:

("cataract extraction"[MeSH]) AND (Anticoagulants[MeSH]). 11 references ("cataract extraction"[MeSH]) AND ("Platelet Aggregation Inhibitors"[MeSH]). 5 references

Cataract Surgery & Vitreoretinal Surgery:

("cataract extraction"[MeSH]) AND (Vitrectomy[MeSH]) AND (combined[tw] OR combination[tw] OR simultaneous*[tw]). 88 references

("cataract extraction"[MeSH]) AND ("vitreoretinal surgery"[tw]) AND (combined[tw] OR combination[tw] OR simultaneous*[tw]). 8 references

Cataract Surgery Following Refractive Surgery:

("cataract surgery"[Title/Abstract]) AND ("refractive surgery"[Title/Abstract]). 43 references (refractive[Title/Abstract]) AND (surgery[Title/Abstract]) AND ("intraocular lens"[Title/Abstract]) AND (calculat*[Title/Abstract]). 117 references

Cataract in the Functionally Monocular Patient: ("cataract extraction"[MeSH]) AND (Vision, Monocular[MeSH]). 7 references

Second Eye Surgery:

("cataract extraction"[MeSH]) AND "second eye". 42 references

Presbyopia-correcting intraocular lenses: ("presbyopia"[MeSH]) AND "lenses, intraocular"[MeSH]. 31 references

Simultaneous Bilateral Cataract Surgery:

("cataract extraction"[MeSH]) AND bilateral AND (same-day OR simultaneous OR sequential). 31 references

Postoperative Management, Postoperative Follow-up:

("cataract extraction"[MeSH]) AND ("Postoperative Care"[MeSH]) AND ("time factors" [MeSH]). 6 references ("cataract extraction"[MeSH]) AND (first AND review AND postoperative). 18 references

Posterior Capsular Opacification:

("cataract extraction"[MeSH]) AND ("posterior capsular opacification"[Title/Abstract]). 40 references

Cost of Cataract Surgery:

(("cost benefit analysis"[MeSH Terms] OR "cost control"[MeSH Terms] OR "cost savings"[MeSH Terms]) AND "cataract extraction"[MeSH Terms]). 33 references

Nutrition Studies:

(("cataract/epidemiology"[MeSH Terms]) OR ("cataract/prevention and control"[MeSH Terms])) AND (("nutrition assessment"[MeSH Terms]) OR ("food habits"[MeSH Terms]) OR ("diet"[MeSH Terms]) OR (diet surveys[MeSH Terms]) OR ("nutritional physiological phenomena"[MeSH Terms]) OR (fruit[MeSH Terms]) OR (vegetables[MeSH Terms]) OR ("vitamins"[MeSH Terms]) OR ("minerals"[MeSH Terms]) OR ("antioxidants"[MeSH Terms]) OR ("dietary supplements"[MeSH Terms]) OR ("beta carotene"[MeSH Terms]) OR ("riboflavin"[MeSH Terms]) OR ("niacin"[MeSH Terms]) OR ("ascorbic acid"[MeSH Terms]) OR ("vitamine "[MeSH Terms]) OR ("niacin"[MeSH Terms]) OR ("ascorbic acid"[MeSH Terms]) OR ("vitamine "[MeSH Terms])). 59 references

((cataract[MAJR]) AND (("nutrition assessment"[MeSH Terms]) OR ("food habits"[MeSH Terms]) OR ("diet"[MeSH Terms]) OR (diet surveys[MeSH Terms]) OR ("nutritional physiological phenomena"[MeSH Terms]) OR (fruit[MeSH Terms]) OR (vegetables[MeSH Terms]) OR ("vitamins"[MeSH Terms]) OR ("minerals"[MeSH Terms]) OR ("antioxidants"[MeSH Terms]) OR ("dietary supplements"[MeSH Terms]) OR ("beta carotene"[MeSH Terms]) OR ("riboflavin"[MeSH Terms]) OR ("niacin"[MeSH Terms]) OR ("ascorbic acid"[MeSH Terms]) OR ("vitamin e"[MeSH Terms])). Additional limit: Humans. 65 references

Cataract Surgery & Uveitis:

("cataract extraction"[MeSH]) AND (Uveitis[MeSH]) AND (combined[tw] OR combination[tw] OR simultaneous*[tw]). 14 references

Cataract Surgery & Immunosuppression: Additional limit: Humans ("Cataract Extraction"[Mesh]) AND "Immunosuppression"[Mesh]. 1 reference

Lens Implantation: Additional limit: Humans, All Adult: 19+ years, Clinical Trial, Meta-Analysis. "lens implantation, intraocular"[MeSH Terms]. 284 references

Cochrane Searches (Publication date 1/10/11 – 7/13/2015)

MeSH descriptor Cataract Extraction explode all trees in Cochrane Database of Systematic Reviews. 13 references

MeSH descriptor Cataract Extraction explode all trees in Other Reviews. 26 references

MeSH descriptor Cataract Extraction explode all trees in Technology Assessments. 12 references

MeSH descriptor Cataract Extraction explode all trees in Economic Evaluations. 18 references

LIST OF ABBREVIATIONS

ADVS: Activities of Daily Vision Scale				
AMD: age-related macular degeneration				
ARC: age-related cataract				
AREDS: Age-Related Eye Disease Study				
ASC: ambulatory surgery center				
ASCRS: American Society of Cataract and Refractive Surgery				
BCVA: best-corrected visual acuity				
CCC: continuous curvilinear capsulorrhexis				
CME: cystoid macular edema				
D: diopter				
DME: diabetic macular edema				
DSEK: Descemet stripping endothelial keratoplasty				
DMEK: Descemet membrane endothelial keratoplasty				
ECCE: extracapsular cataract extraction				
ESCRS: European Society of Cataract and Refractive Surgeons				
EVS: Endophthalmitis Vitrectomy Study				
FLACS: femtosecond laser-assisted cataract surgery				
HEMA: hydroxy ethyl methacrylate				
HOPD: hospital-based outpatient department				
HORV: hemorrhagic occlusive retinal vasculitis				
HSM: heparin-surface-modified				
ICCE: intracapsular cataract extraction				
IFIS: intraoperative floppy iris syndrome				
IOL: intraocular lens				
<i>IOP:</i> intraocular pressure				
Nd:YAG: neodymium: yttrium-aluminum-garnet				
NEI-VFQ: National Eye Institute-Visual Function Questionnaire				
NEON: National Eyecare Outcomes Network				
NSAID: nonsteroidal anti-inflammatory drug				
OCT: optical coherence tomography				
OVD: ophthalmic viscosurgical device				
PCO: posterior capsular opacification				
PMMA: polymethyl methacrylate				
DODT. Detiont Outcomes Descereb Team				

PORT: Patient Outcomes Research Team

PPP: Preferred Practice Pattern

PSC: posterior subcapsular cataract

QALY: quality-adjusted life year

RCT: randomized controlled trial

SICS: small-incision cataract surgery

TASS: toxic anterior segment syndrome

VEGF: vascular endothelial growth factor

VF-14: visual function index

VHA: Veterans Health Administration

RELATED ACADEMY MATERIALS

Basic and Clinical Science Course

Lens and Cataract (Section 11, 2016–2017)

Focal Points

Cataract Surgery in the Developing World (2011) Diagnosis and Management of Cataract after Vitrectomy (2016) Femtosecond Laser-assisted Cataract Surgery (2015) Pseudophakic Cystoid Macular Edema (2012)

Patient Education Booklets

Cataract Surgery (2014) Enhanced Lens Options for Cataract Surgery (2014)

Patient Education Brochures

Cataract (2016) Cataract (Spanish: Catarata) (2016) Cataract Surgery (2016) Eye Myths & Facts (2014) Seeing Well as You Grow Older (2016)

Patient Education Downloadable Videos

Cataract and Refractive Surgery Patient Education Video Collection (2015) Downloadable Patient Education Animation Collection (2015)

Patient Safety Statement – Free downloads available at <u>www.aao.org/guidelines</u>browse?filter=patientsafetyguideline.

Recommendations of American Academy of Ophthalmology Wrong-Site Task Force (2014)

Performance Improvement CME

Wrong Site/Wrong IOL Surgery Performance Improvement CME – Available at: <u>www.aao.org/pi-</u> <u>cme/wrong-site-wrong-iol</u> (login required)

Preferred Practice Pattern® Guidelines – Free downloads available at <u>www.aao.org/ppp</u>.

Comprehensive Adult Medical Eye Evaluation (2015)

To order any of these materials, except for the free materials, please contact the Academy's Customer Service at 866.561.8558 (U.S. only) or 415.561.8540 or <u>www.aao.org/store</u>.

REFERENCES

- Scottish Intercollegiate Guidelines Network. Annex B: key to evidence statements and grades of recommendations. In: SIGN 50: A Guideline Developer's Handbook. 2008 edition, revised 2011. Edinburgh, Scotland: Scottish Intercollegiate Guidelines Network. Available at: www.sign.ac.uk/guidelines/fulltext/50/annexoldb.html. Accessed May 27, 2016.
- 2. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336:924-6.
- 3. GRADE Working Group. Organizations that have endorsed or that are using GRADE. Available at: <u>www.gradeworkinggroup.org/</u>. Accessed May 27, 2016.
- 4. National Eye Institute. Statistics and data: cataract. Available at: https://nei.nih.gov/eyedata/cataract. Accessed March 10, 2016.
- 5. Congdon N, Vingerling JR, Klein BE, et al. Prevalence of cataract and pseudophakia/aphakia among adults in the United States. Arch Ophthalmol 2004;122:487-94.
- 6. Cotter SA, Varma R, Ying-Lai M, et al. Causes of low vision and blindness in adult Latinos: the Los Angeles Latino Eye Study. Ophthalmology 2006;113:1574-82.
- Richter GM, Torres M, Choudhury F, et al, Los Angeles Latino Eye Study Group. Risk factors for cortical, nuclear, posterior subcapsular, and mixed lens opacities: the Los Angeles Latino Eye Study. Ophthalmology 2012;119:547-54.
- 8. Vivino MA, Chintalagiri S, Trus B, Datiles M. Development of a Scheimpflug slit lamp camera system for quantitative densitometric analysis. Eye 1993;7 (Pt 6):791-8.
- 9. Magno BV, Freidlin V, Datiles MB 3rd. Reproducibility of the NEI Scheimpflug Cataract Imaging System. Invest Ophthalmol Vis Sci 1994;35:3078-84.
- 10. Chylack LT Jr, Wolfe JK, Singer DM, et al. The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group. Arch Ophthalmol 1993;111:831-6.
- 11. Taylor HR, West SK. The clinical grading of lens opacities. Aust N Z J Ophthalmol 1989;17:81-6.
- 12. Klein BE, Klein R, Linton KL, et al. Assessment of cataracts from photographs in the Beaver Dam Eye Study. Ophthalmology 1990;97:1428-33.
- 13. Tan AC, Wang JJ, Lamoureux EL, et al. Cataract prevalence varies substantially with assessment systems: comparison of clinical and photographic grading in a population-based study. Ophthalmic Epidemiol 2011;18:164-70.
- 14. Ventura L, Lam KW, Lin TY. The differences between brunescent and opalescent nucleosclerosis. Lens Research 1987;4:79-86.
- 15. Klein BE, Klein R, Moss SE. Incident cataract surgery: the Beaver Dam Eye Study. Ophthalmology 1997;104:573-80.
- 16. Panchapakesan J, Mitchell P, Tumuluri K, et al. Five year incidence of cataract surgery: the Blue Mountains Eye Study. Br J Ophthalmol 2003;87:168-72.
- 17. Lewis A, Congdon N, Munoz B, et al. Cataract surgery and subtype in a defined, older population: the SEECAT Project. Br J Ophthalmol 2004;88:1512-7.
- 18. West SK, Munoz B, Schein OD, et al. Racial differences in lens opacities: the Salisbury Eye Evaluation (SEE) Project. Am J Epidemiol 1998;148:1033-9.
- 19. Varma R, Torres M. Prevalence of lens opacities in Latinos: the Los Angeles Latino Eye Study. Ophthalmology 2004;111:1449-56.
- 20. Chang JR, Koo E, Agron E, et al, Age-Related Eye Disease Study Group. Risk factors associated with incident cataracts and cataract surgery in the Age-related Eye Disease Study (AREDS): AREDS report number 32. Ophthalmology 2011;118:2113-9.
- 21. Duan XR, Liang YB, Wang NL, et al. Prevalence and associations of cataract in a rural Chinese adult population: the Handan Eye Study. Graefes Arch Clin Exp Ophthalmol 2013;251:203-12.
- 22. Kuang TM, Tsai SY, Liu CJ, et al. Seven-year incidence of age-related cataracts among an elderly Chinese population in Shihpai, Taiwan: The Shihpai Eye Study. Invest Ophthalmol Vis Sci 2013;54:6409-15.
- Delcourt C, Carriere I, Ponton-Sanchez A, et al, POLA Study Group. Light exposure and the risk of cortical, nuclear, and posterior subcapsular cataracts: the Pathologies Oculaires Liees a l'Age (POLA) Study. Arch Ophthalmol 2000;118:385-92.

- 24. Kanthan GL, Wang JJ, Rochtchina E, et al. Ten-year incidence of age-related cataract and cataract surgery in an older Australian population: the Blue Mountains Eye Study. Ophthalmology 2008;115:808-14.
- 25. Leske MC, Wu SY, Nemesure B, et al. Nine-year incidence of lens opacities in the Barbados Eye Studies. Ophthalmology 2004;111:483-90.
- 26. West SK, Valmadrid CT. Epidemiology of risk factors for age-related cataract. Surv Ophthalmol 1995;39:323-34.
- 27. Cumming RG, Mitchell P, Leeder SR. Use of inhaled corticosteroids and the risk of cataracts. N Engl J Med 1997;337:8-14.
- 28. Jick SS, Vasilakis-Scaramozza C, Maier WC. The risk of cataract among users of inhaled steroids. Epidemiology 2001;12:229-34.
- 29. Klein BE, Klein R, Lee KE, Danforth LG. Drug use and five-year incidence of age-related cataracts: The Beaver Dam Eye Study. Ophthalmology 2001;108:1670-4.
- 30. Smeeth L, Boulis M, Hubbard R, Fletcher AE. A population based case-control study of cataract and inhaled corticosteroids. Br J Ophthalmol 2003;87:1247-51.
- 31. Urban RC Jr, Cotlier E. Corticosteroid-induced cataracts. Surv Ophthalmol 1986;31:102-10.
- 32. Hennis A, Wu SY, Nemesure B, Leske MC. Risk factors for incident cortical and posterior subcapsular lens opacities in the Barbados Eye Studies. Arch Ophthalmol 2004;122:525-30.
- 33. Klein BE, Klein R, Lee KE. Diabetes, cardiovascular disease, selected cardiovascular disease risk factors, and the 5-year incidence of age-related cataract and progression of lens opacities: the Beaver Dam Eye Study. Am J Ophthalmol 1998;126:782-90.
- 34. Leske MC, Wu SY, Hennis A, et al. Diabetes, hypertension, and central obesity as cataract risk factors in a black population: the Barbados Eye Study. Ophthalmology 1999;106:35-41.
- 35. Belkacemi Y, Labopin M, Vernant JP, et al. Cataracts after total body irradiation and bone marrow transplantation in patients with acute leukemia in complete remission: a study of the European Group for Blood and Marrow Transplantation. Int J Radiat Oncol Biol Phys 1998;41:659-68.
- 36. Ainsbury EA, Bouffler SD, Dorr W, et al. Radiation cataractogenesis: a review of recent studies. Radiat Res 2009;172:1-9.
- 37. Hamon MD, Gale RF, Macdonald ID, et al. Incidence of cataracts after single fraction total body irradiation: the role of steroids and graft versus host disease. Bone Marrow Transplant 1993;12:233-6.
- 38. Pardo-Munoz A, Muriel-Herrero A, Abraira V, et al. Phacoemulsification in previously vitrectomized patients: an analysis of the surgical results in 100 eyes as well as the factors contributing to the cataract formation. Eur J Ophthalmol 2006;16:52-9.
- 39. Asbell PA, Dualan I, Mindel J, et al. Age-related cataract. Lancet 2005;365:599-609.
- 40. Delcourt C, Cristol JP, Tessier F, et al. Risk factors for cortical, nuclear, and posterior subcapsular cataracts: the POLA study. Pathologies Oculaires Liees a l'Age. Am J Epidemiol 2000;151:497-504.
- 41. Li L, Wan XH, Zhao GH. Meta-analysis of the risk of cataract in type 2 diabetes. BMC Ophthalmol 2014;14:94.
- 42. McCarty CA, Nanjan MB, Taylor HR. Attributable risk estimates for cataract to prioritize medical and public health action. Invest Ophthalmol Vis Sci 2000;41:3720-5.
- 43. McCarty CA, Mukesh BN, Fu CL, Taylor HR. The epidemiology of cataract in Australia. Am J Ophthalmol 1999;128:446-65.
- 44. Hammond CJ, Duncan DD, Snieder H, et al. The heritability of age-related cortical cataract: the twin eye study. Invest Ophthalmol Vis Sci 2001;42:601-5.
- 45. Heiba IM, Elston RC, Klein BE, Klein R. Evidence for a major gene for cortical cataract. Invest Ophthalmol Vis Sci 1995;36:227-35.
- 46. Familial aggregation of lens opacities: the Framingham Eye Study and the Framingham Offspring Eye Study. Am J Epidemiol 1994;140:555-64.
- Congdon N, Broman KW, Lai H, et al. Cortical, but not posterior subcapsular, cataract shows significant familial aggregation in an older population after adjustment for possible shared environmental factors. Ophthalmology 2005;112:73-7.
- 48. Mukesh BN, Le A, Dimitrov PN, et al. Development of cataract and associated risk factors: the Visual Impairment Project. Arch Ophthalmol 2006;124:79-85.
- 49. Lim R, Mitchell P, Cumming RG. Refractive associations with cataract: the Blue Mountains Eye Study. Invest Ophthalmol Vis Sci 1999;40:3021-6.
- 50. Younan C, Mitchell P, Cumming R, et al. Cardiovascular disease, vascular risk factors and the incidence of cataract and cataract surgery: the Blue Mountains Eye Study. Ophthalmic Epidemiol 2003;10:227-40.

- 51. Caulfield LE, West SK, Barron Y, Cid-Ruzafa J. Anthropometric status and cataract: the Salisbury Eye Evaluation project. Am J Clin Nutr 1999;69:237-42.
- 52. McCarty CA, Taylor HR. A review of the epidemiologic evidence linking ultraviolet radiation and cataracts. Dev Ophthalmol 2002;35:21-31.
- 53. Glynn RJ, Christen WG, Manson JE, et al. Body mass index: an independent predictor of cataract. Arch Ophthalmol 1995;113:1131-7.
- 54. Chang MA, Congdon NG, Bykhovskaya I, et al. The association between myopia and various subtypes of lens opacity: SEE (Salisbury Eye Evaluation) project. Ophthalmology 2005;112:1395-401.
- 55. Pan CW, Boey PY, Cheng CY, et al. Myopia, axial length, and age-related cataract: the Singapore Malay eye study. Invest Ophthalmol Vis Sci 2013;54:4498-502.
- 56. Wong TY, Klein BE, Klein R, et al. Refractive errors and incident cataracts: the Beaver Dam Eye Study. Invest Ophthalmol Vis Sci 2001;42:1449-54.
- 57. Pan CW, Cheng CY, Saw SM, et al. Myopia and age-related cataract: a systematic review and metaanalysis. Am J Ophthalmol 2013;156:1021-33.
- 58. Hammond CJ, Snieder H, Spector TD, Gilbert CE. Genetic and environmental factors in age-related nuclear cataracts in monozygotic and dizygotic twins. N Engl J Med 2000;342:1786-90.
- 59. Heiba IM, Elston RC, Klein BE, Klein R. Genetic etiology of nuclear cataract: evidence for a major gene. Am J Med Genet 1993;47:1208-14.
- 60. Kanthan GL, Wang JJ, Rochtchina E, Mitchell P. Use of antihypertensive medications and topical beta-blockers and the long-term incidence of cataract and cataract surgery. Br J Ophthalmol 2009;93:1210-4.
- 61. Patelli F, Radice P, Zumbo G, et al. 25-gauge macular surgery: results and complications. Retina 2007;27:750-4.
- 62. Melberg NS, Thomas MA. Nuclear sclerotic cataract after vitrectomy in patients younger than 50 years of age. Ophthalmology 1995;102:1466-71.
- 63. Christen WG, Manson JE, Seddon JM, et al. A prospective study of cigarette smoking and risk of cataract in men. JAMA 1992;268:989-93.
- 64. Christen WG, Glynn RJ, Ajani UA, et al. Smoking cessation and risk of age-related cataract in men. JAMA 2000;284:713-6.
- 65. Kelly SP, Thornton J, Edwards R, et al. Smoking and cataract: review of causal association. J Cataract Refract Surg 2005;31:2395-404.
- 66. Klein AP, Duggal P, Lee KE, et al. Polygenic effects and cigarette smoking account for a portion of the familial aggregation of nuclear sclerosis. Am J Epidemiol 2005;161:707-13.
- 67. Age-Related Eye Disease Study Research Group. Risk factors associated with age-related nuclear and cortical cataract: a case-control study in the Age-Related Eye Disease Study: AREDS report no. 5. Ophthalmology 2001;108:1400-8.
- 68. Leske MC, Chylack LT Jr, Wu SY. The Lens Opacities Case-Control Study. Risk factors for cataract. Arch Ophthalmol 1991;109:244-51.
- 69. Ye J, He J, Wang C, et al. Smoking and risk of age-related cataract: a meta-analysis. Invest Ophthalmol Vis Sci 2012;53:3885-95.
- 70. Raju P, George R, Ve Ramesh S, et al. Influence of tobacco use on cataract development. Br J Ophthalmol 2006;90:1374-7.
- 71. Neale RE, Purdie JL, Hirst LW, Green AC. Sun exposure as a risk factor for nuclear cataract. Epidemiology 2003;14:707-12.
- 72. Hall MD, Schultheiss TE, Smith DD, et al. Dose response for radiation cataractogenesis: a metaregression of hematopoietic stem cell transplantation regimens. Int J Radiat Oncol Biol Phys 2015;91:22-9.
- 73. Wong TY, Klein BE, Klein R, Tomany SC. Relation of ocular trauma to cortical, nuclear, and posterior subcapsular cataracts: the Beaver Dam Eye Study. Br J Ophthalmol 2002;86:152-5.
- 74. Fishman GA, Anderson RJ, Lourenco P. Prevalence of posterior subcapsular lens opacities in patients with retinitis pigmentosa. Br J Ophthalmol 1985;69:263-6.
- 75. Pruett RC. Retinitis pigmentosa: clinical observations and correlations. Trans Am Ophthalmol Soc 1983;81:693-735.
- 76. Heckenlively J. The frequency of posterior subcapsular cataract in the hereditary retinal degenerations. Am J Ophthalmol 1982;93:733-8.
- 77. Giuffre G, Dardanoni G, Lodato G. A case-control study on risk factors for nuclear, cortical and posterior subcapsular cataract: the Casteldaccia Eye Study. Acta Ophthalmol Scand 2005;83:567-73.
- 78. Hiller R, Sperduto RD, Ederer F. Epidemiologic associations with nuclear, cortical, and posterior subcapsular cataracts. Am J Epidemiol 1986;124:916-25.

- 79. Peto R, Gray R, Collins R, et al. Randomised trial of prophylactic daily aspirin in British male doctors. Br Med J (Clin Res Ed) 1988;296:313-6.
- 80. Chew EY, Williams GA, Burton TC, et al. Aspirin effects on the development of cataracts in patients with diabetes mellitus. Early Treatment Diabetic Retinopathy Study report number 16. Arch Ophthalmol 1992;110:339-42.
- 81. Seddon JM, Christen WG, Manson JE, et al. Low-dose aspirin and risks of cataract in a randomized trial of US physicians. Arch Ophthalmol 1991;109:252-5.
- 82. Christen WG, Manson JE, Glynn RJ, et al. Low-dose aspirin and risk of cataract and subtypes in a randomized trial of U.S. physicians. Ophthalmic Epidemiol 1998;5:133-42.
- 83. Christen WG, Ajani UA, Schaumberg DA, et al. Aspirin use and risk of cataract in posttrial follow-up of Physicians' Health Study I. Arch Ophthalmol 2001;119:405-12.
- 84. van Heyningen R, Harding JJ. Do aspirin-like analgesics protect against cataract? A case-control study. Lancet 1986;1:1111-3.
- 85. Ernst P, Baltzan M, Deschenes J, Suissa S. Low-dose inhaled and nasal corticosteroid use and the risk of cataracts. Eur Respir J 2006;27:1168-74.
- 86. Garbe E, Suissa S, LeLorier J. Association of inhaled corticosteroid use with cataract extraction in elderly patients. JAMA 1998;280:539-43.
- 87. Ahmadi N, Snidvongs K, Kalish L, et al. Intranasal corticosteroids do not affect intraocular pressure or lens opacity: a systematic review of controlled trials. Rhinology 2015;53:290-302.
- 88. Diabetic Retinopathy Clinical Research Network. A randomized trial comparing intravitreal triamcinolone acetonide and focal/grid photocoagulation for diabetic macular edema. Ophthalmology 2008;115:1447-9.
- 89. Yang Y, Bailey C, Loewenstein A, Massin P. Intravitreal corticosteroids in diabetic macular edema: pharmacokinetic considerations. Retina 2015;35:2440-9.
- 90. Lindblad BE, Hakansson N, Svensson H, et al. Intensity of smoking and smoking cessation in relation to risk of cataract extraction: a prospective study of women. Am J Epidemiol 2005;162:73-9.
- 91. Lindblad BE, Hakansson N, Wolk A. Smoking cessation and the risk of cataract: a prospective cohort study of cataract extraction among men. JAMA Ophthalmol 2014;132:253-7.
- 92. Shih YH, Chang HY, Lu MI, Hurng BS. Time trend of prevalence of self-reported cataract and its association with prolonged sitting in Taiwan from 2001 and 2013. BMC Ophthalmol 2014;14:128.
- Zheng Selin J, Orsini N, Ejdervik Lindblad B, Wolk A. Long-term physical activity and risk of agerelated cataract: a population-based prospective study of male and female cohorts. Ophthalmology 2015;122:274-80.
- 94. Klein R, Klein BE, Jensen SC, et al. The relation of socioeconomic factors to age-related cataract, maculopathy, and impaired vision: the Beaver Dam Eye Study. Ophthalmology 1994;101:1969-79.
- 95. Leske MC, Chylack LT, Jr, He Q, et al. LSC Group. Risk factors for nuclear opalescence in a longitudinal study. Am J Epidemiol 1998;147:36-41.
- 96. Meier FM, Tuft SJ, Pavesio CE. Cataract surgery in uveitis. Ophthalmol Clin North Am 2002;15:365-73.
- 97. McCarty CA, Mukesh BN, Dimitrov PN, Taylor HR. Incidence and progression of cataract in the Melbourne Visual Impairment Project. Am J Ophthalmol 2003;136:10-7.
- 98. Leske MC, Chylack LT Jr, He Q, et al. Incidence and progression of cortical and posterior subcapsular opacities: the Longitudinal Study of Cataract. The LSC Group. Ophthalmology 1997;104:1987-93.
- 99. Leske MC, Chylack LT Jr, Wu SY, et al. Incidence and progression of nuclear opacities in the Longitudinal Study of Cataract. Ophthalmology 1996;103:705-12.
- 100. Datta S, Foss AJ, Grainge MJ, et al. The importance of acuity, stereopsis, and contrast sensitivity for health-related quality of life in elderly women with cataracts. Invest Ophthalmol Vis Sci 2008;49:1-6.
- 101. Steinberg EP, Tielsch JM, Schein OD, et al. The VF-14. An index of functional impairment in patients with cataract. Arch Ophthalmol 1994;112:630-8.
- 102. Bilbao A, Quintana JM, Escobar A, et al. Responsiveness and clinically important differences for the VF-14 index, SF-36, and visual acuity in patients undergoing cataract surgery. Ophthalmology 2009;116:418-24.
- 103. Ishii K, Kabata T, Oshika T. The impact of cataract surgery on cognitive impairment and depressive mental status in elderly patients. Am J Ophthalmol 2008;146:404-9.
- 104. Lundstrom M, Pesudovs K. Catquest-9SF patient outcomes questionnaire: nine-item short-form Rasch-scaled revision of the Catquest questionnaire. J Cataract Refract Surg 2009;35:504-13.
- 105. Gothwal VK, Wright TA, Lamoureux EL, Pesudovs K. Visual Activities Questionnaire: assessment of subscale validity for cataract surgery outcomes. J Cataract Refract Surg 2009;35:1961-9.
- 106. Schein OD, Steinberg EP, Javitt JC, et al. Variation in cataract surgery practice and clinical outcomes. Ophthalmology 1994;101:1142-52.

- 107. Mangione CM, Phillips RS, Lawrence MG, et al. Improved visual function and attenuation of declines in health-related quality of life after cataract extraction. Arch Ophthalmol 1994;112:1419-25.
- 108. Desai P, Minassian DC, Reidy A. National cataract surgery survey 1997-8: a report of the results of the clinical outcomes. Br J Ophthalmol 1999;83:1336-40.
- 109. McGwin G Jr, Scilley K, Brown J, Owsley C. Impact of cataract surgery on self-reported visual difficulties: comparison with a no-surgery reference group. J Cataract Refract Surg 2003;29:941-8.
- 110. Harwood RH, Foss AJ, Osborn F, et al. Falls and health status in elderly women following first eye cataract surgery: a randomised controlled trial. Br J Ophthalmol 2005;89:53-9.
- 111. Gray CS, Karimova G, Hildreth AJ, et al. Recovery of visual and functional disability following cataract surgery in older people: Sunderland Cataract Study. J Cataract Refract Surg 2006;32:60-6.
- 112. Monestam E, Wachtmeister L. Impact of cataract surgery on visual acuity and subjective functional outcomes: a population-based study in Sweden. Eye 1999;13 (Pt 6):711-9.
- 113. Lee BS, Munoz BE, West SK, Gower EW. Functional improvement after one- and two-eye cataract surgery in the Salisbury Eye Evaluation. Ophthalmology 2013;120:949-55.
- 114. Lee P, Smith JP, Kington R. The relationship of self-rated vision and hearing to functional status and well-being among seniors 70 years and older. Am J Ophthalmol 1999;127:447-52.
- 115. Lee PP, Spritzer K, Hays RD. The impact of blurred vision on functioning and well-being. Ophthalmology 1997;104:390-6.
- 116. Broman AT, Munoz B, Rodriguez J, et al. The impact of visual impairment and eye disease on visionrelated quality of life in a Mexican-American population: proyecto VER. Invest Ophthalmol Vis Sci 2002;43:3393-8.
- 117. Foss AJ, Harwood RH, Osborn F, et al. Falls and health status in elderly women following second eye cataract surgery: a randomised controlled trial. Age Ageing 2006;35:66-71.
- 118. Klein BE, Klein R, Knudtson MD. Lens opacities associated with performance-based and selfassessed visual functions. Ophthalmology 2006;113:1257-63.
- 119. Chandrasekaran S, Wang JJ, Rochtchina E, Mitchell P. Change in health-related quality of life after cataract surgery in a population-based sample. Eye (Lond) 2008;22:479-84.
- 120. Asplund R, Ejdervik Lindblad B. The development of sleep in persons undergoing cataract surgery. Arch Gerontol Geriatr 2002;35:179-87.
- 121. Asplund R, Lindblad BE. Sleep and sleepiness 1 and 9 months after cataract surgery. Arch Gerontol Geriatr 2004;38:69-75.
- 122. De Coster C, Dik N, Bellan L. Health care utilization for injury in cataract surgery patients. Can J Ophthalmol 2007;42:567-72.
- 123. Masud T, Morris RO. Epidemiology of falls. Age Ageing 2001;30 Suppl 4:3-7.
- 124. Ivers RQ, Norton R, Cumming RG, et al. Visual impairment and risk of hip fracture. Am J Epidemiol 2000;152:633-9.
- 125. Cummings SR, Nevitt MC, Browner WS, et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 1995;332:767-73.
- 126. Tseng VL, Yu F, Lum F, Coleman AL. Risk of fractures following cataract surgery in Medicare beneficiaries. JAMA 2012;308:493-501.
- 127. To KG, Meuleners L, Bulsara M, et al. A longitudinal cohort study of the impact of first- and both-eye cataract surgery on falls and other injuries in Vietnam. Clin Interv Aging 2014;9:743-51.
- 128. Wang JJ, Mitchell P, Cumming RG, Smith W. Visual impairment and nursing home placement in older Australians: the Blue Mountains Eye Study. Ophthalmic Epidemiol 2003;10:3-13.
- 129. McGwin G Jr, Chapman V, Owsley C. Visual risk factors for driving difficulty among older drivers. Accid Anal Prev 2000;32:735-44.
- 130. Owsley C, Stalvey BT, Wells J, et al. Visual risk factors for crash involvement in older drivers with cataract. Arch Ophthalmol 2001;119:881-7.
- 131. Subzwari S, Desapriya E, Scime G, et al. Effectiveness of cataract surgery in reducing driving-related difficulties: a systematic review and meta-analysis. Inj Prev 2008;14:324-8.
- 132. Wood JM, Carberry TP. Bilateral cataract surgery and driving performance. Br J Ophthalmol 2006;90:1277-80.
- 133. Owsley C, Stalvey B, Wells J, Sloane ME. Older drivers and cataract: driving habits and crash risk. J Gerontol A Biol Sci Med Sci 1999;54:M203-11.
- 134. Owsley C, McGwin G Jr, Sloane M, et al. Impact of cataract surgery on motor vehicle crash involvement by older adults. JAMA 2002;288:841-9.
- 135. Meuleners LB, Hendrie D, Lee AH, et al. The effectiveness of cataract surgery in reducing motor vehicle crashes: a whole population study using linked data. Ophthalmic Epidemiol 2012;19:23-8.

- 136. Bassett K, Noertjojo K, Nirmalan P, et al. RESIO revisited: visual function assessment and cataract surgery in British Columbia. Can J Ophthalmol 2005;40:27-33.
- Fong CS, Mitchell P, Rochtchina E, et al. Correction of visual impairment by cataract surgery and improved survival in older persons: the Blue Mountains Eye Study cohort. Ophthalmology 2013;120:1720-7.
- 138. Fong CS, Mitchell P, Rochtchina E, et al. Visual impairment corrected via cataract surgery and 5-year survival in a prospective cohort. Am J Ophthalmol 2014;157:163-70.
- 139. Song E, Sun H, Xu Y, et al. Age-related cataract, cataract surgery and subsequent mortality: a systematic review and meta-analysis. PLoS One 2014;9:e112054.
- 140. Conner-Spady B, Sanmartin C, Sanmugasunderam S, et al. A systematic literature review of the evidence on benchmarks for cataract surgery waiting time. Can J Ophthalmol 2007;42:543-51.
- 141. Hodge W, Horsley T, Albiani D, et al. The consequences of waiting for cataract surgery: a systematic review. CMAJ 2007;176:1285-90.
- Essue BM, Li Q, Hackett ML, et al. A multicenter prospective cohort study of quality of life and economic outcomes after cataract surgery in Vietnam: the VISIONARY study. Ophthalmology 2014;121:2138-46.
- 143. Finger RP, Kupitz DG, Fenwick E, et al. The impact of successful cataract surgery on quality of life, household income and social status in South India. PLoS One 2012;7:e44268.
- 144. Rocha KM, Nose W, Bottos K, et al. Higher-order aberrations of age-related cataract. J Cataract Refract Surg 2007;33:1442-6.
- 145. Sachdev N, Ormonde SE, Sherwin T, McGhee CN. Higher-order aberrations of lenticular opacities. J Cataract Refract Surg 2004;30:1642-8.
- 146. Quintana JM, Arostegui I, Alberdi T, et al, IRYSS-Cataract Group. Decision trees for indication of cataract surgery based on changes in visual acuity. Ophthalmology 2010;117:1471-8.
- 147. Schein OD, Steinberg EP, Cassard SD, et al. Predictors of outcome in patients who underwent cataract surgery. Ophthalmology 1995;102:817-23.
- 148. Mangione CM, Phillips RS, Seddon JM, et al. Development of the 'Activities of Daily Vision Scale'. A measure of visual functional status. Med Care 1992;30:1111-26.
- 149. Rosen PN, Kaplan RM, David K. Measuring outcomes of cataract surgery using the Quality of Well-Being Scale and VF-14 Visual Function Index. J Cataract Refract Surg 2005;31:369-78.
- 150. Amesbury EC, Grossberg AL, Hong DM, Miller KM. Functional visual outcomes of cataract surgery in patients with 20/20 or better preoperative visual acuity. J Cataract Refract Surg 2009;35:1505-8.
- 151. Ware JE Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 1992;30:473-83.
- 152. Damiano AM, Steinberg EP, Cassard SD, et al. Comparison of generic versus disease-specific measures of functional impairment in patients with cataract. Med Care 1995;33:AS120-30.
- 153. Sloane ME, Ball K, Owsley C, et al. The Visual Activities Questionnaire: developing an instrument for assessing problems in everyday visual tasks. Technical Digest, Noninvasive Assessment of the Visual System 1992;1:26-9.
- 154. Gothwal VK, Wright TA, Lamoureux EL, Pesudovs K. Measuring outcomes of cataract surgery using the Visual Function Index-14. J Cataract Refract Surg 2010;36:1181-8.
- 155. Mangione CM, Lee PP, Gutierrez PR, et al. Development of the 25-item National Eye Institute Visual Function Questionnaire. Arch Ophthalmol 2001;119:1050-8.
- 156. Clemons TE, Chew EY, Bressler SB, McBee W. National Eye Institute Visual Function Questionnaire in the Age-Related Eye Disease Study (AREDS): AREDS report no. 10. Arch Ophthalmol 2003;121:211-7.
- 157. Khadka J, Huang J, Mollazadegan K, et al. Translation, cultural adaptation, and Rasch analysis of the visual function (VF-14) questionnaire. Invest Ophthalmol Vis Sci 2014;55:4413-20.
- 158. Hiratsuka Y, Yamada M, Akune Y, et al. Assessment of vision-related quality of life among patients with cataracts and the outcomes of cataract surgery using a newly developed visual function questionnaire: the VFQ-J11. Jpn J Ophthalmol 2014;58:415-22.
- 159. To KG, Meuleners L, Chen HY, et al. Assessing the test-retest repeatability of the Vietnamese version of the National Eye Institute 25-item Visual Function Questionnaire among bilateral cataract patients for a Vietnamese population. Australas J Ageing 2014;33:E7-10.
- 160. Bellan L. Why are patients with no visual symptoms on cataract waiting lists? Can J Ophthalmol 2005;40:433-8.
- 161. Feder RS, Olsen TW, Prum BE Jr, et al. Comprehensive Adult Medical Eye Evaluation Preferred Practice Pattern® Guidelines. Ophthalmology 2016;123:P209-36. Available at

<u>www.aaojournal.org/content/preferred-practice-pattern</u> or <u>www.aao.org/ppp</u>. Accessed August 23, 2016.

- 162. Bernth-Petersen P. Visual functioning in cataract patients. Methods of measuring and results. Acta Ophthalmol (Copenh) 1981;59:198-205.
- 163. Adamsons I, Rubin GS, Vitale S, et al. The effect of early cataracts on glare and contrast sensitivity. A pilot study. Arch Ophthalmol 1992;110:1081-6.
- 164. Rubin GS, Adamsons IA, Stark WJ. Comparison of acuity, contrast sensitivity, and disability glare before and after cataract surgery. Arch Ophthalmol 1993;111:56-61.
- 165. Holladay JT, Prager TC, Trujillo J, Ruiz RS. Brightness acuity test and outdoor visual acuity in cataract patients. J Cataract Refract Surg 1987;13:67-9.
- 166. Yamaguchi T, Negishi K, Tsubota K. Functional visual acuity measurement in cataract and intraocular lens implantation. Curr Opin Ophthalmol 2011;22:31-6.
- 167. Pfoff DS, Werner JS. Effect of cataract surgery on contrast sensitivity and glare in patients with 20/50 or better Snellen acuity. J Cataract Refract Surg 1994;20:620-5.
- 168. van der Meulen IJ, Gjertsen J, Kruijt B, et al. Straylight measurements as an indication for cataract surgery. J Cataract Refract Surg 2012;38:840-8.
- Adamsons IA, Vitale S, Stark WJ, Rubin GS. The association of postoperative subjective visual function with acuity, glare, and contrast sensitivity in patients with early cataract. Arch Ophthalmol 1996;114:529-36.
- 170. Elliott DB, Bullimore MA. Assessing the reliability, discriminative ability, and validity of disability glare tests. Invest Ophthalmol Vis Sci 1993;34:108-19.
- 171. Wang L, Santaella RM, Booth M, Koch DD. Higher-order aberrations from the internal optics of the eye. J Cataract Refract Surg 2005;31:1512-9.
- 172. Beiko GH. Personalized correction of spherical aberration in cataract surgery. J Cataract Refract Surg 2007;33:1455-60.
- 173. Solomon JD. Outcomes of corneal spherical aberration-guided cataract surgery measured by the OPDscan. J Refract Surg 2010;26:863-9.
- 174. Melki SA, Safar A, Martin J, et al. Potential acuity pinhole: a simple method to measure potential visual acuity in patients with cataracts, comparison to potential acuity meter. Ophthalmology 1999;106:1262-7.
- 175. Gus PI, Kwitko I, Roehe D, Kwitko S. Potential acuity meter accuracy in cataract patients. J Cataract Refract Surg 2000;26:1238-41.
- 176. Tetz MR, Klein U, Volcker HE. Measurement of potential visual acuity in 343 patients with cataracts. A prospective clinical study. Ger J Ophthalmol 1992;1:403-8.
- 177. Lasa MS, Datiles MB, 3rd, Freidlin V. Potential vision tests in patients with cataracts. Ophthalmology 1995;102:1007-11.
- 178. Hofeldt AJ, Weiss MJ. Illuminated near card assessment of potential acuity in eyes with cataract. Ophthalmology 1998;105:1531-6.
- 179. Cuzzani OE, Ellant JP, Young PW, et al. Potential acuity meter versus scanning laser ophthalmoscope to predict visual acuity in cataract patients. J Cataract Refract Surg 1998;24:263-9.
- Epitropoulos AT, Fram NR, Masket S, et al. Evaluation of a new Controlled point source LED glare tester for disability glare detection in participants with and without cataracts. J Refract Surg 2015;31:196-201.
- 181. Chang MA, Airiani S, Miele D, Braunstein RE. A comparison of the potential acuity meter (PAM) and the illuminated near card (INC) in patients undergoing phacoemulsification. Eye (Lond) 2006;20:1345-51.
- 182. Vryghem JC, Van Cleynenbreugel H, Van Calster J, Leroux K. Predicting cataract surgery results using a macular function test. J Cataract Refract Surg 2004;30:2349-53.
- 183. Bourne WM, Nelson LR, Hodge DO. Continued endothelial cell loss ten years after lens implantation. Ophthalmology 1994;101:1014-22; discussion 1022-3.
- 184. Bates AK, Cheng H. Bullous keratopathy: a study of endothelial cell morphology in patients undergoing cataract surgery. Br J Ophthalmol 1988;72:409-12.
- 185. Savini G, Naeser K. An analysis of the factors influencing the residual refractive astigmatism after cataract surgery with toric intraocular lenses. Invest Ophthalmol Vis Sci 2015;56:827-35.
- 186. Hirnschall N, Hoffmann PC, Draschl P, et al. Evaluation of factors influencing the remaining astigmatism after toric intraocular lens implantation. J Refract Surg 2014;30:394-400.
- Hirnschall N, Gangwani V, Crnej A, et al. Correction of moderate corneal astigmatism during cataract surgery: toric intraocular lens versus peripheral corneal relaxing incisions. J Cataract Refract Surg 2014;40:354-61.

- 188. Wade M, Steinert RF, Garg S, et al. Results of toric intraocular lenses for post-penetrating keratoplasty astigmatism. Ophthalmology 2014;121:771-7.
- 189. Safran SG. How spectral-domain OCT has changed my practice. Cataract & Refractive Surgery Today 2010. Available at: <u>http://bmctoday.net/crstoday/pdfs/crst0310_cs_safran.pdf</u>. Accessed May 27, 2016.
- 190. Safran SG. SD-OCT: a quantam leap for anterior segment surgeons. Current Insight. San Francisco, CA: American Academy of Ophthalmology; 2009. Available at: <u>www.aao.org/current-insight/sdoctquantum-leap-anterior-segment-surgeons</u>. Accessed May 27, 2016.
- 191. Chan TC, Li EY, Yau JC. Application of anterior segment optical coherence tomography to identify eyes with posterior polar cataract at high risk for posterior capsule rupture. J Cataract Refract Surg 2014;40:2076-81.
- 192. Klein BE, Klein R, Lee KE, Meuer SM. Socioeconomic and lifestyle factors and the 10-year incidence of age-related cataracts. Am J Ophthalmol 2003;136:506-12.
- 193. Tan JS, Wang JJ, Younan C, et al. Smoking and the long-term incidence of cataract: the Blue Mountains Eye Study. Ophthalmic Epidemiol 2008;15:155-61.
- 194. Weintraub JM, Willett WC, Rosner B, et al. Smoking cessation and risk of cataract extraction among US women and men. Am J Epidemiol 2002;155:72-9.
- 195. Galor A, Lee DJ. Effects of smoking on ocular health. Curr Opin Ophthalmol 2011;22:477-82.
- 196. Delcourt C, Cougnard-Gregoire A, Boniol M, et al. Lifetime exposure to ambient ultraviolet radiation and the risk for cataract extraction and age-related macular degeneration: the Alienor Study. Invest Ophthalmol Vis Sci 2014;55:7619-27.
- 197. Zhu M, Yu J, Gao Q, et al. The relationship between disability-adjusted life years of cataracts and ambient erythemal ultraviolet radiation in China. J Epidemiol 2015;25:57-65.
- 198. Mathew MC, Ervin AM, Tao J, Davis RM. Antioxidant vitamin supplementation for preventing and slowing the progression of age-related cataract. Cochrane Database Syst Rev 2012, Issue 6. Art. No.: CD004567. DOI: 10.1002/14651858.CD004567.pub2.
- 199. Zheng Selin J, Rautiainen S, Lindblad BE, et al. High-dose supplements of vitamins C and E, lowdose multivitamins, and the risk of age-related cataract: a population-based prospective cohort study of men. Am J Epidemiol 2013;177:548-55.
- 200. Rautiainen S, Lindblad BE, Morgenstern R, Wolk A. Vitamin C supplements and the risk of age-related cataract: a population-based prospective cohort study in women. Am J Clin Nutr 2010;91:487-93.
- 201. Christen WG, Glynn RJ, Gaziano JM, et al. Age-related cataract in men in the Selenium and Vitamin E Cancer Prevention Trial Eye Endpoints Study: a randomized clinical trial. JAMA Ophthalmol 2015;133:17-24.
- 202. Chew EY, SanGiovanni JP, Ferris FL, et al, Age-Related Eye Disease Study 2 (AREDS2) Research Group. Lutein/zeaxanthin for the treatment of age-related cataract: AREDS2 randomized trial report no. 4. JAMA Ophthalmol 2013;131:843-50.
- 203. Yonova-Doing E, Forkin ZA, Hysi PG, et al. Genetic and dietary factors influencing the progression of nuclear cataract. Ophthalmology 2016;123:1237-44.
- 204. Huang HY, Caballero B, Chang S, et al. Multivitamin/Mineral Supplements and Prevention of Chronic Disease. Evidence Report/Technology Assessment No. 139. (Prepared by The Johns Hopkins University Evidence-Based Practice Center under Contract No. 290-02-0018.) AHRQ Publication No. 06-E012. Rockville, MD: Agency for Healthcare Research and Quality. May 2006.
- 205. Zhao LQ, Li LM, Zhu H, The Epidemiological Evidence-Based Eye Disease Study Research Group. The effect of multivitamin/mineral supplements on age-related cataracts: a systematic review and meta-analysis. Nutrients 2014;6:931-49.
- 206. Maraini G, Sperduto RD, Ferris F, et al, Clinical Trial of Nutritional Supplements and Age-Related Cataract Study Group. A randomized, double-masked, placebo-controlled clinical trial of multivitamin supplementation for age-related lens opacities: Clinical Trial of Nutritional Supplements and Age-Related Cataract report no. 3. Ophthalmology 2008;115:599-607.
- 207. Christen WG, Glynn RJ, Manson JE, et al. Effects of multivitamin supplement on cataract and agerelated macular degeneration in a randomized trial of male physicians. Ophthalmology 2014;121:525-34.
- 208. Christen WG, Liu S, Schaumberg DA, Buring JE. Fruit and vegetable intake and the risk of cataract in women. Am J Clin Nutr 2005;81:1417-22.
- 209. Lu M, Cho E, Taylor A, et al. Prospective study of dietary fat and risk of cataract extraction among US women. Am J Epidemiol 2005;161:948-59.
- 210. Appleby PN, Allen NE, Key TJ. Diet, vegetarianism, and cataract risk. Am J Clin Nutr 2011;93:1128-35.
- 211. Rautiainen S, Lindblad BE, Morgenstern R, Wolk A. Total antioxidant capacity of the diet and risk of age-related cataract: a population-based prospective cohort of women. JAMA Ophthalmol 2014;132:247-52.

- 212. Williams PT. Prospective epidemiological cohort study of reduced risk for incident cataract with vigorous physical activity and cardiorespiratory fitness during a 7-year follow-up. Invest Ophthalmol Vis Sci 2009;50:95-100.
- 213. Kostis JB, Dobrzynski JM. Prevention of cataracts by statins: a meta-analysis. J Cardiovasc Pharmacol Ther 2014;19:191-200.
- 214. Wise SJ, Nathoo NA, Etminan M, et al. Statin use and risk for cataract: a nested case-control study of 2 populations in Canada and the United States. Can J Cardiol 2014;30:1613-9.
- 215. Leuschen J, Mortensen EM, Frei CR, et al. Association of statin use with cataracts: a propensity scorematched analysis. JAMA Ophthalmol 2013;131:1427-34.
- 216. Hippisley-Cox J, Coupland C. Unintended effects of statins in men and women in England and Wales: population based cohort study using the QResearch database. BMJ 2010;340:c2197.
- 217. AREDS2 Research Group, Al-Holou SN, Tucker WR, Agrón E, et al. The association of statin use with cataract progression and cataract surgery: the AREDS2 report number 8. Ophthalmology 2016;123:916-7.
- 218. Paunksnis A, Bojarskiene F, Cimbalas A, et al. Relation between cataract and metabolic syndrome and its components. Eur J Ophthalmol 2007;17:605-14.
- 219. Lindblad BE, Hakansson N, Philipson B, Wolk A. Metabolic syndrome components in relation to risk of cataract extraction: a prospective cohort study of women. Ophthalmology 2008;115:1687-92.
- 220. Ghaem Maralani H, Tai BC, Wong TY, et al. Metabolic syndrome and risk of age-related cataract over time: an analysis of interval-censored data using a random-effects model. Invest Ophthalmol Vis Sci 2013;54:641-6.
- 221. Smith MP, Colyer MH, Weichel ED, Stutzman RD. Traumatic cataracts secondary to combat ocular trauma. J Cataract Refract Surg 2015;41:1693-8.
- 222. National Cancer Institute. Tobacco and the clinician: interventions for medical and dental practice. Monograph #5 (Publ #M492). Bethesda, MD: National Cancer Institute, 1994;1-22.
- 223. Ockene JK. Smoking intervention: the expanding role of the physician. Am J Public Health 1987;77:782-3.
- 224. Pederson LL, Baskerville JC, Wanklin JM. Multivariate statistical models for predicting change in smoking behavior following physician advice to quit smoking. Prev Med 1982;11:536-49.
- 225. Ranney L, Melvin C, Lux L, et al. Tobacco Use: Prevention, Cessation, and Control. Evidence Report/Technology Assessment No. 140. (Prepared by the RTI International -- University of North Carolina Evidence-Based Practice Center under Contract No. 290-02-0016.) AHRQ Publication No. 06-E015. Rockville, MD: Agency for Healthcare Research and Quality. June 2006.
- 226. Wang JJ, Rochtchina E, Tan AG, et al. Use of inhaled and oral corticosteroids and the long-term risk of cataract. Ophthalmology 2009;116:652-7.
- 227. Lagerlund M, Dixon HG, Simpson JA, et al. Observed use of sunglasses in public outdoor settings around Melbourne, Australia: 1993 to 2002. Prev Med 2006;42:291-6.
- 228. Yu JG, Zhao YE, Shi JL, et al. Biaxial microincision cataract surgery versus conventional coaxial cataract surgery: metaanalysis of randomized controlled trials. J Cataract Refract Surg 2012;38:894-901.
- 229. Riaz Y, Mehta JS, Wormald R, et al. Surgical interventions for age-related cataract. Cochrane Database Syst Rev 2006, Issue 4. Art. No.: CD001323. DOI: 10.1002/14651858.CD001323.pub2.
- Ruit S, Tabin G, Chang D, et al. A prospective randomized clinical trial of phacoemulsification vs manual sutureless small-incision extracapsular cataract surgery in Nepal. Am J Ophthalmol 2007;143:32-8.
- 231. American Academy of Ophthalmology. Policy Statement. Preoperative Assessment: Responsibilities of the Ophthalmologist. San Francisco, CA: American Academy of Ophthalmology; 2012. Available at: www.aao.org/guidelines-browse?filter=clinicalstatement. Accessed May 27, 2016.
- 232. American Academy of Ophthalmology. Policy Statement. An Ophthalmologist's Duties Concerning Postoperative Care. San Francisco, CA: American Academy of Ophthalmology; 2012. Available at: www.aao.org/guidelines-browse?filter=clinicalstatement. Accessed May 27, 2016.
- 233. American Academy of Ophthalmology Committee for Practice Improvement and Ophthalmic Mutual Insurance Company. Patient Safety Statement. Practice Guidelines for Informed Consent. San Francisco, CA: American Academy of Ophthalmology; 2011. Available at: <u>www.aao.org/guidelinesbrowse?filter=patientsafetyguideline</u>. Accessed May 27, 2016.
- 234. Lee TH, Marcantonio ER, Mangione CM, et al. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation 1999;100:1043-9.
- 235. Schein OD, Katz J, Bass EB, et al. The value of routine preoperative medical testing before cataract surgery. Study of Medical Testing for Cataract Surgery. N Engl J Med 2000;342:168-75.

- 236. Keay L, Lindsley K, Tielsch J, et al. Routine preoperative medical testing for cataract surgery. Cochrane Database Syst Rev 2009, Issue 2. Art. No.: CD007293. DOI: 10.1002/14651858.CD007293.pub2.
- Findl O, Kriechbaum K, Sacu S, et al. Influence of operator experience on the performance of ultrasound biometry compared to optical biometry before cataract surgery. J Cataract Refract Surg 2003;29:1950-5.
- 238. Shammas HJ. A comparison of immersion and contact techniques for axial length measurement. J Am Intraocul Implant Soc 1984;10:444-7.
- 239. Schelenz J, Kammann J. Comparison of contact and immersion techniques for axial length measurement and implant power calculation. J Cataract Refract Surg 1989;15:425-8.
- 240. Eleftheriadis H. IOLMaster biometry: refractive results of 100 consecutive cases. Br J Ophthalmol 2003;87:960-3.
- 241. Connors R 3rd, Boseman P 3rd, Olson RJ. Accuracy and reproducibility of biometry using partial coherence interferometry. J Cataract Refract Surg 2002;28:235-8.
- 242. Haigis W, Lege B, Miller N, Schneider B. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol 2000;238:765-73.
- 243. Packer M, Fine IH, Hoffman RS, et al. Immersion A-scan compared with partial coherence interferometry: outcomes analysis. J Cataract Refract Surg 2002;28:239-42.
- 244. Landers J, Goggin M. Comparison of refractive outcomes using immersion ultrasound biometry and IOLMaster biometry. Clin Experiment Ophthalmol 2009;37:566-9.
- 245. Vogel A, Dick HB, Krummenauer F. Reproducibility of optical biometry using partial coherence interferometry: intraobserver and interobserver reliability. J Cataract Refract Surg 2001;27:1961-8.
- 246. Wang L, Shirayama M, Ma XJ, et al. Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm. J Cataract Refract Surg 2011;37:2018-27.
- 247. Lege BA, Haigis W. Laser interference biometry versus ultrasound biometry in certain clinical conditions. Graefes Arch Clin Exp Ophthalmol 2004;242:8-12.
- 248. Dietlein TS, Roessler G, Luke C, et al. Signal quality of biometry in silicone oil-filled eyes using partial coherence laser interferometry. J Cataract Refract Surg 2005;31:1006-10.
- Hill W, Li W, Koch DD. IOL power calculation in eyes that have undergone LASIK/PRK/RK. Version 4.7. American Society of Cataract and Refractive Surgery. Available at: http://iolcalc.ascrs.org/. Accessed May 27, 2016.
- 250. Hill W, Angeles R, Otani T. Evaluation of a new IOLMaster algorithm to measure axial length. J Cataract Refract Surg 2008;34:920-4.
- 251. Freeman G, Pesudovs K. The impact of cataract severity on measurement acquisition with the IOLMaster. Acta Ophthalmol Scand 2005;83:439-42.
- 252. Tehrani M, Krummenauer F, Blom E, Dick HB. Evaluation of the practicality of optical biometry and applanation ultrasound in 253 eyes. J Cataract Refract Surg 2003;29:741-6.
- 253. Hoffer KJ. The Hoffer Q formula: a comparison of theoretic and regression formulas. J Cataract Refract Surg 1993;19:700-12. Erratum. J Cataract Refract Surg 1994;20:677.
- 254. Zuberbuhler B, Morrell AJ. Errata in printed Hoffer Q formula. J Cataract Refract Surg 2007;33:2; author reply 2-3.
- 255. Hoffer KJ. Clinical results using the Holladay 2 intraocular lens power formula. J Cataract Refract Surg 2000;26:1233-7.
- 256. Olsen T, Corydon L, Gimbel H. Intraocular lens power calculation with an improved anterior chamber depth prediction algorithm. J Cataract Refract Surg 1995;21:313-9.
- 257. Hoffmann PC, Hutz WW, Eckhardt HB. Significance of optic formula selection for postoperative refraction after cataract operation [in German]. Klin Monatsbl Augenheilkd 1997;211:168-77.
- 258. Retzlaff JA, Sanders DR, Kraff MC. Development of the SRK/T intraocular lens implant power calculation formula. J Cataract Refract Surg 1990;16:333-40.
- 259. Reitblat O, Assia EI, Kleinmann G, et al. Accuracy of predicted refraction with multifocal intraocular lenses using two biometry measurement devices and multiple intraocular lens power calculation formulas. Clin Experiment Ophthalmol 2015;43:328-34.
- Abulafia A, Barrett GD, Rotenberg M, et al. Intraocular lens power calculation for eyes with an axial length greater than 26.0 mm: comparison of formulas and methods. J Cataract Refract Surg 2015;41:548-56.
- 261. Chong EW, Mehta JS. High myopia and cataract surgery. Curr Opin Ophthalmol 2016;27:45-50.
- 262. Haigis W. Intraocular lens calculation in extreme myopia. J Cataract Refract Surg 2009;35:906-11.
- 263. Kapamajian MA, Miller KM. Efficacy and safety of cataract extraction with negative power intraocular lens implantation. Open Ophthalmol J 2008;2:15-9.

- 264. Findl O, Menapace R, Rainer G, Georgopoulos M. Contact zone of piggyback acrylic intraocular lenses. J Cataract Refract Surg 1999;25:860-2.
- 265. Werner L, Shugar JK, Apple DJ, et al. Opacification of piggyback IOLs associated with an amorphous material attached to interlenticular surfaces. J Cataract Refract Surg 2000;26:1612-9.
- 266. Shugar JK, Keeler S. Interpseudophakos intraocular lens surface opacification as a late complication of piggyback acrylic posterior chamber lens implantation. J Cataract Refract Surg 2000;26:448-55.
- Hill WE, Byrne SF. Complex axial length measurements and unusual IOL power calculations. Focal Points: Clinical Modules for Ophthalmologists. Module 9. San Francisco, CA: American Academy of Ophthalmology; 2004:10-11.
- 268. Shugar JK, Lewis C, Lee A. Implantation of multiple foldable acrylic posterior chamber lenses in the capsular bag for high hyperopia. J Cataract Refract Surg 1996;22 Suppl 2:1368-72.
- 269. Gayton JL, Sanders V, Van der Karr M, Raanan MG. Piggybacking intraocular implants to correct pseudophakic refractive error. Ophthalmology 1999;106:56-9.
- Mingo-Botin D, Munoz-Negrete FJ, Won Kim HR, et al. Comparison of toric intraocular lenses and peripheral corneal relaxing incisions to treat astigmatism during cataract surgery. J Cataract Refract Surg 2010;36:1700-8.
- 271. Kessel L, Andresen J, Tendal B, et al. Toric intraocular lenses in the correction of astigmatism during cataract surgery: a systematic review and meta-analysis. Ophthalmology 2016;123:275-86.
- 272. Lam DK, Chow VW, Ye C, et al. Comparative evaluation of aspheric toric intraocular lens implantation and limbal relaxing incisions in eyes with cataracts and </=3 dioptres of astigmatism. Br J Ophthalmol 2016;100:258-62.
- 273. Koch DD, Ali SF, Weikert MP, et al. Contribution of posterior corneal astigmatism to total corneal astigmatism. J Cataract Refract Surg 2012;38:2080-7.
- 274. Eom Y, Rhim JW, Kang SY, et al. Toric intraocular lens calculations using ratio of anterior to posterior corneal cylinder power. Am J Ophthalmol 2015;160:717-24.
- 275. Davison JA, Potvin R. Refractive cylinder outcomes after calculating toric intraocular lens cylinder power using total corneal refractive power. Clin Ophthalmol 2015;9:1511-7.
- 276. Eom Y, Kang SY, Song JS, et al. Effect of effective lens position on cylinder power of toric intraocular lenses. Can J Ophthalmol 2015;50:26-32.
- 277. Thiagarajan M, McClenaghan R, Anderson DF. Comparison of visual performance with an aspheric intraocular lens and a spherical intraocular lens. J Cataract Refract Surg 2011;37:1993-2000.
- 278. Schuster AK, Tesarz J, Vossmerbaeumer U. The impact on vision of aspheric to spherical monofocal intraocular lenses in cataract surgery: a systematic review with meta-analysis. Ophthalmology 2013;120:2166-75.
- 279. Munoz G, Albarran-Diego C, Galotto MA, et al. Lack of effect of intraocular lens asphericity on visual performance with acrylic intraocular lenses. Eur J Ophthalmol 2011;21:723-31.
- 280. Morales EL, Rocha KM, Chalita MR, et al. Comparison of optical aberrations and contrast sensitivity between aspheric and spherical intraocular lenses. J Refract Surg 2011;27:723-8.
- 281. Liu J, Zhao J, Ma L, et al. Contrast sensitivity and spherical aberration in eyes implanted with AcrySof IQ and AcrySof Natural intraocular lens: the results of a meta-analysis. PLoS One 2013;8:e77860.
- 282. Nochez Y, Favard A, Majzoub S, Pisella PJ. Measurement of corneal aberrations for customisation of intraocular lens asphericity: impact on quality of vision after micro-incision cataract surgery. Br J Ophthalmol 2010;94:440-4.
- 283. Hemmati HD, Gologorsky D, Pineda R 2nd. Intraoperative wavefront aberrometry in cataract surgery. Semin Ophthalmol 2012;27:100-6.
- 284. Rubenstein JB, Raciti M. Approaches to corneal astigmatism in cataract surgery. Curr Opin Ophthalmol 2013;24:30-4.
- 285. Ianchulev T, Hoffer KJ, Yoo SH, et al. Intraoperative refractive biometry for predicting intraocular lens power calculation after prior myopic refractive surgery. Ophthalmology 2014;121:56-60.
- 286. Schein OD, Friedman DS, Fleisher LA, et al. Anesthesia Management During Cataract Surgery. Evidence Report/Technology Assessment No. 16. AHRQ Publication No. 00-E014. Rockville, MD: Agency for Healthcare Research and Quality. December 2001. Available at: <u>http://archive.ahrq.gov/clinic/epcsums/anestsum.htm</u>. Accessed February 10, 2016.
- 287. Katz J, Feldman MA, Bass EB, et al, The Study of Medical Testing for Cataract Surgery Study Team. Injectable versus topical anesthesia for cataract surgery: patient perceptions of pain and side effects. Ophthalmology 2000;107:2054-60.
- 288. Katz J, Feldman MA, Bass EB, et al. Adverse intraoperative medical events and their association with anesthesia management strategies in cataract surgery. Ophthalmology 2001;108:1721-6.

- Alhassan MB, Kyari F, Ejere HOD. Peribulbar versus retrobulbar anaesthesia for cataract surgery. Cochrane Database Syst Rev 2015, Issue 7. Art. No.: CD004083. DOI: 10.1002/14651858.CD004083.pub3.
- Davison M, Padroni S, Bunce C, Rushcen H. Sub-Tenon's anaesthesia versus topical anaesthesia for cataract surgery. Cochrane Database Syst Rev 2007, Issue 3. Art. No.: CD006291. DOI: 10.1002/14651858.CD006291.pub2.
- 291. El-Hindy N, Johnston RL, Jaycock P, et al. The Cataract National Dataset Electronic Multi-centre Audit of 55,567 operations: anaesthetic techniques and complications. Eye (Lond) 2009;23:50-5.
- 292. Ezra DG, Allan BDS. Topical anaesthesia alone versus topical anaesthesia with intracameral lidocaine for phacoemulsification. Cochrane Database Syst Rev 2007, Issue 3. Art. No.: CD005276. DOI: 10.1002/14651858.CD005276.pub2.
- 293. Navaleza JS, Pendse SJ, Blecher MH. Choosing anesthesia for cataract surgery. Ophthalmol Clin North Am 2006;19:233-7.
- 294. Boezaart A, Berry R, Nell M. Topical anesthesia versus retrobulbar block for cataract surgery: the patients' perspective. J Clin Anesth 2000;12:58-60.
- 295. Zhao LQ, Zhu H, Zhao PQ, et al. Topical anesthesia versus regional anesthesia for cataract surgery: a meta-analysis of randomized controlled trials. Ophthalmology 2012;119:659-67.
- 296. Alhassan MB, Kyari F, Ejere HOD. Peribulbar versus retrobulbar anaesthesia for cataract surgery. Cochrane Database Syst Rev 2008, Issue 3. Art. No.: CD004083. DOI: 10.1002/14651858.CD004083.pub2.
- 297. Friedman DS, Bass EB, Lubomski LH, et al. Synthesis of the literature on the effectiveness of regional anesthesia for cataract surgery. Ophthalmology 2001;108:519-29.
- 298. Edge R, Navon S. Scleral perforation during retrobulbar and peribulbar anesthesia: risk factors and outcome in 50,000 consecutive injections. J Cataract Refract Surg 1999;25:1237-44.
- 299. Guay J, Sales K. Sub-Tenon's anaesthesia versus topical anaesthesia for cataract surgery. Cochrane Database Syst Rev 2015, Issue 8. Art. No.: CD006291. DOI: 10.1002/14651858.CD006291.pub3.
- 300. Voon LW, Au Eong KG, Saw SM, et al. Effect of preoperative counseling on patient fear from the visual experience during phacoemulsification under topical anesthesia: Multicenter randomized clinical trial. J Cataract Refract Surg 2005;31:1966-9.
- 301. Haripriya A, Tan CS, Venkatesh R, et al. Effect of preoperative counseling on fear from visual sensations during phacoemulsification under topical anesthesia. J Cataract Refract Surg 2011;37:814-8.
- 302. Roberts T, Boytell K. A comparison of cataract surgery under topical anaesthesia with and without intracameral lignocaine. Clin Experiment Ophthalmol 2002;30:19-22.
- 303. Ezra DG, Nambiar A, Allan BD. Supplementary intracameral lidocaine for phacoemulsification under topical anesthesia. A meta-analysis of randomized controlled trials. Ophthalmology 2008;115:455-87.
- 304. Rosenfeld SI, Litinsky SM, Snyder DA, et al. Effectiveness of monitored anesthesia care in cataract surgery. Ophthalmology 1999;106:1256-60; discussion 1261.
- 305. Tantri A, Clark C, Huber P, et al. Anesthesia monitoring by registered nurses during cataract surgery: assessment of need for intraoperative anesthesia consultation. J Cataract Refract Surg 2006;32:1115-8.
- 306. Erie AJ, McHugh R, Warner M, Erie JC. Model of anesthesia care that combines anesthesiologists and registered nurses during cataract surgery. J Cataract Refract Surg 2011;37:481-5.
- 307. Zakrzewski PA, Friel T, Fox G, Braga-Mele R. Monitored anesthesia care provided by registered respiratory care practitioners during cataract surgery: a report of 1957 cases. Ophthalmology 2005;112:272-7.
- Bellan L, Gooi A, Rehsia S. The Misericordia Health Centre cataract comfort study. Can J Ophthalmol 2002;37:155-60.
- 309. Erb T, Sluga M, Hampl KF, et al. Preoperative anxiolysis with minimal sedation in elderly patients: bromazepam or clorazepate-dipotassium? Acta Anaesthesiol Scand 1998;42:97-101.
- 310. Boezaart AP, Berry RA, Laubscher JJ, Nell ML. Evaluation of anxiolysis and pain associated with combined peri- and retrobulbar eye block for cataract surgery. J Clin Anesth 1998;10:204-10.
- Chen M, Hill GM, Patrianakos TD, et al. Oral diazepam versus intravenous midazolam for conscious sedation during cataract surgery performed using topical anesthesia. J Cataract Refract Surg 2015;41:415-21.
- 312. Kavitha J, Parida S, Kundra P, Srinivasan R. Oral gabapentin premedication for elderly patients undergoing intraocular surgery. Br J Ophthalmol 2013;97:900-4.
- 313. Friedman DS, Reeves SW, Bass EB, et al. Patient preferences for anaesthesia management during cataract surgery. Br J Ophthalmol 2004;88:333-5.
- 314. Deramo VA, Lai JC, Fastenberg DM, Udell IJ. Acute endophthalmitis in eyes treated prophylactically with gatifloxacin and moxifloxacin. Am J Ophthalmol 2006;142:721-5.

- 315. Deramo VA, Lai JC, Winokur J, et al. Visual outcome and bacterial sensitivity after methicillinresistant Staphylococcus aureus-associated acute endophthalmitis. Am J Ophthalmol 2008;145:413-7.
- 316. Recchia FM, Busbee BG, Pearlman RB, et al. Changing trends in the microbiologic aspects of postcataract endophthalmitis. Arch Ophthalmol 2005;123:341-6.
- 317. Altan T, Acar N, Kapran Z, et al. Acute-onset endophthalmitis after cataract surgery: success of initial therapy, visual outcomes, and related factors. Retina 2009;29:606-12.
- 318. West ES, Behrens A, McDonnell PJ, et al. The incidence of endophthalmitis after cataract surgery among the U.S. Medicare population increased between 1994 and 2001. Ophthalmology 2005;112:1388-94.
- 319. Taban M, Behrens A, Newcomb RL, et al. Acute endophthalmitis following cataract surgery: a systematic review of the literature. Arch Ophthalmol 2005;123:613-20.
- 320. Taban M, Behrens A, Newcomb RL, et al. Incidence of acute endophthalmitis following penetrating keratoplasty: a systematic review. Arch Ophthalmol 2005;123:605-9.
- 321. Thoms SS, Musch DC, Soong HK. Postoperative endophthalmitis associated with sutured versus unsutured clear corneal cataract incisions. Br J Ophthalmol 2007;91:728-30.
- 322. Keay L, Gower EW, Cassard SD, et al. Postcataract surgery endophthalmitis in the United States: analysis of the complete 2003 to 2004 Medicare database of cataract surgeries. Ophthalmology 2012;119:914-22.
- 323. Behndig A, Montan P, Stenevi U, et al. One million cataract surgeries: Swedish National Cataract Register 1992-2009. J Cataract Refract Surg 2011;37:1539-45.
- 324. Cooper BA, Holekamp NM, Bohigian G, Thompson PA. Case-control study of endophthalmitis after cataract surgery comparing scleral tunnel and clear corneal wounds. Am J Ophthalmol 2003;136:300-5.
- 325. Colleaux KM, Hamilton WK. Effect of prophylactic antibiotics and incision type on the incidence of endophthalmitis after cataract surgery. Can J Ophthalmol 2000;35:373-8.
- 326. Nagaki Y, Hayasaka S, Kadoi C, et al. Bacterial endophthalmitis after small-incision cataract surgery. effect of incision placement and intraocular lens type. J Cataract Refract Surg 2003;29:20-6.
- 327. McDonnell PJ, Taban M, Sarayba M, et al. Dynamic morphology of clear corneal cataract incisions. Ophthalmology 2003;110:2342-8.
- 328. Taban M, Rao B, Reznik J, et al. Dynamic morphology of sutureless cataract wounds--effect of incision angle and location. Surv Ophthalmol 2004;49 Suppl 2:S62-72.
- 329. Sarayba MA, Taban M, Ignacio TS, et al. Inflow of ocular surface fluid through clear corneal cataract incisions: a laboratory model. Am J Ophthalmol 2004;138:206-10.
- Nichamin LD, Chang DF, Johnson SH, et al. ASCRS White Paper: what is the association between clear corneal cataract incisions and postoperative endophthalmitis? J Cataract Refract Surg 2006;32:1556-9.
- 331. Taban M, Sarayba MA, Ignacio TS, et al. Ingress of India ink into the anterior chamber through sutureless clear corneal cataract wounds. Arch Ophthalmol 2005;123:643-8.
- 332. Eifrig CW, Flynn HW, Jr, Scott IU, Newton J. Acute-onset postoperative endophthalmitis: review of incidence and visual outcomes (1995-2001). Ophthalmic Surg Lasers 2002;33:373-8.
- Miller JJ, Scott IU, Flynn HW, Jr, et al. Acute-onset endophthalmitis after cataract surgery (2000-2004): incidence, clinical settings, and visual acuity outcomes after treatment. Am J Ophthalmol 2005;139:983-7.
- 334. Mollan SP, Gao A, Lockwood A, et al. Postcataract endophthalmitis: incidence and microbial isolates in a United Kingdom region from 1996 through 2004. J Cataract Refract Surg 2007;33:265-8.
- 335. Oshika T, Hatano H, Kuwayama Y, et al. Incidence of endophthalmitis after cataract surgery in Japan. Acta Ophthalmol Scand 2007;85:848-51.
- 336. Wallin T, Parker J, Jin Y, et al. Cohort study of 27 cases of endophthalmitis at a single institution. J Cataract Refract Surg 2005;31:735-41.
- 337. Wong TY, Chee SP. The epidemiology of acute endophthalmitis after cataract surgery in an Asian population. Ophthalmology 2004;111:699-705.
- 338. Koc F, Sen E, Demirbay P, et al. Factors influencing treatment results in pseudophakic endophthalmitis. Eur J Ophthalmol 2002;12:34-9.
- 339. Schmitz S, Dick HB, Krummenauer F, Pfeiffer N. Endophthalmitis in cataract surgery: results of a German survey. Ophthalmology 1999;106:1869-77.
- 340. Lundstrom M, Wejde G, Stenevi U, et al. Endophthalmitis after cataract surgery: a nationwide prospective study evaluating incidence in relation to incision type and location. Ophthalmology 2007;114:866-70.
- 341. Hatch WV, Cernat G, Wong D, et al. Risk factors for acute endophthalmitis after cataract surgery: a population-based study. Ophthalmology 2009;116:425-30.

- 342. Ng JQ, Morlet N, Bulsara MK, Semmens JB. Reducing the risk for endophthalmitis after cataract surgery: population-based nested case-control study: endophthalmitis population study of Western Australia sixth report. J Cataract Refract Surg 2007;33:269-80.
- 343. Clark A, Morlet N, Ng JQ, et al. Long-term trends and outcomes of anterior vitrectomy in Western Australia. Acta Ophthalmol 2015;93:27-32.
- 344. Kam JK, Cheng NM, Sarossy M, et al. Nasolacrimal duct screening to minimize post-cataract surgery endophthalmitis. Clin Experiment Ophthalmol 2014;42:447-51.
- 345. Lou B, Lin X, Luo L, et al. Residual lens cortex material: potential risk factor for endophthalmitis after phacoemulsification cataract surgery. J Cataract Refract Surg 2013;39:250-7.
- 346. Herrinton LJ, Shorstein NH, Paschal JF, et al. Comparative effectiveness of antibiotic prophylaxis in cataract surgery. Ophthalmology 2016;123:287-94.
- 347. Jabbarvand M, Hashemian H, Khodaparast M, et al. Endophthalmitis occurring after cataract surgery: outcomes of more than 480 000 cataract surgeries, epidemiologic features, and risk factors. Ophthalmology 2016;123:295-301.
- 348. Haapala TT, Nelimarkka L, Saari JM, et al. Endophthalmitis following cataract surgery in southwest Finland from 1987 to 2000. Graefes Arch Clin Exp Ophthalmol 2005;243:1010-7.
- 349. Ravindran RD, Venkatesh R, Chang DF, et al. Incidence of post-cataract endophthalmitis at Aravind Eye Hospital: outcomes of more than 42,000 consecutive cases using standardized sterilization and prophylaxis protocols. J Cataract Refract Surg 2009;35:629-36.
- 350. Wejde G, Samolov B, Seregard S, et al. Risk factors for endophthalmitis following cataract surgery: a retrospective case-control study. J Hosp Infect 2005;61:251-6.
- 351. ESCRS Endophthalmitis Study Group. Prophylaxis of postoperative endophthalmitis following cataract surgery: results of the ESCRS multicenter study and identification of risk factors. J Cataract Refract Surg 2007;33:978-88.
- 352. Raskin EM, Speaker MG, McCormick SA, et al. Influence of haptic materials on the adherence of staphylococci to intraocular lenses. Arch Ophthalmol 1993;111:250-3.
- 353. Patwardhan A, Rao GP, Saha K, Craig EA. Incidence and outcomes evaluation of endophthalmitis management after phacoemulsification and 3-piece silicone intraocular lens implantation over 6 years in a single eye unit. J Cataract Refract Surg 2006;32:1018-21.
- 354. Kodjikian L, Renaud FN, Roques C, et al. In vitro influence of vancomycin on adhesion of a Staphylococcus epidermidis strain encoding intercellular adhesion locus ica to intraocular lenses. J Cataract Refract Surg 2005;31:1050-8.
- 355. Ozkan B, Karabas VL, Gundes S, et al. Effect of vancomycin, teicoplanin, and cefuroxime on Staphylococcus epidermidis adherence to intraocular lenses. J Cataract Refract Surg 2005;31:1814-20.
- 356. Mayer E, Cadman D, Ewings P, et al. A 10 year retrospective survey of cataract surgery and endophthalmitis in a single eye unit: injectable lenses lower the incidence of endophthalmitis. Br J Ophthalmol 2003;87:867-9.
- 357. Leslie T, Aitken DA, Barrie T, Kirkness CM. Residual debris as a potential cause of postphacoemulsification endophthalmitis. Eye 2003;17:506-12.
- 358. Zaluski S, Clayman HM, Karsenti G, et al. Pseudomonas aeruginosa endophthalmitis caused by contamination of the internal fluid pathways of a phacoemulsifier. J Cataract Refract Surg 1999;25:540-5.
- 359. Outbreaks of postoperative bacterial endophthalmitis caused by intrinsically contaminated ophthalmic solutions--Thailand, 1992, and Canada, 1993. MMWR Morb Mortal Wkly Rep 1996;45:491-4.
- Mino de Kaspar H, Grasbon T, Kampik A. Automated surgical equipment requires routine disinfection of vacuum control manifold to prevent postoperative endophthalmitis. Ophthalmology 2000;107:685-90.
- Ramappa M, Majji AB, Murthy SI, et al. An outbreak of acute post-cataract surgery Pseudomonas sp. endophthalmitis caused by contaminated hydrophilic intraocular lens solution. Ophthalmology 2012;119:564-70.
- 362. Pathengay A, Flynn HW Jr, Isom RF, Miller D. Endophthalmitis outbreaks following cataract surgery: causative organisms, etiologies, and visual acuity outcomes. J Cataract Refract Surg 2012;38:1278-82.
- 363. Lalitha P, Das M, Purva PS, et al. Postoperative endophthalmitis due to Burkholderia cepacia complex from contaminated anaesthetic eye drops. Br J Ophthalmol 2014;98:1498-502.
- 364. Akçakaya AA, Sargin F, Erbil HH, et al. A cluster of acute-onset postoperative endophthalmitis over a 1-month period: investigation of an outbreak caused by uncommon species. Br J Ophthalmol 2011;95:481-4.

- 365. Tarkkanen A, Raivio V, Anttila VJ, et al. Fungal endophthalmitis caused by Paecilomyces variotii following cataract surgery: a presumed operating room air-conditioning system contamination. Acta Ophthalmol Scand 2004;82:232-5.
- 366. Fridkin SK, Kremer FB, Bland LA, et al. Acremonium kiliense endophthalmitis that occurred after cataract extraction in an ambulatory surgical center and was traced to an environmental reservoir. Clin Infect Dis 1996;22:222-7.
- 367. Speaker MG, Milch FA, Shah MK, et al. Role of external bacterial flora in the pathogenesis of acute postoperative endophthalmitis. Ophthalmology 1991;98:639-49; discussion 650.
- 368. Ciulla TA, Starr MB, Masket S. Bacterial endophthalmitis prophylaxis for cataract surgery: an evidence-based update. Ophthalmology 2002;109:13-24.
- 369. Speaker MG, Menikoff JA. Prophylaxis of endophthalmitis with topical povidone-iodine. Ophthalmology 1991;98:1769-75.
- 370. Carrim ZI, Mackie G, Gallacher G, Wykes WN. The efficacy of 5% povidone-iodine for 3 minutes prior to cataract surgery. Eur J Ophthalmol 2009;19:560-4.
- 371. Ferguson AW, Scott JA, McGavigan J, et al. Comparison of 5% povidone-iodine solution against 1% povidone-iodine solution in preoperative cataract surgery antisepsis: a prospective randomised double blind study. Br J Ophthalmol 2003;87:163-7.
- 372. Hosseini H, Ashraf MJ, Saleh M, et al. Effect of povidone-iodine concentration and exposure time on bacteria isolated from endophthalmitis cases. J Cataract Refract Surg 2012;38:92-6.
- 373. Li B, Nentwich MM, Hoffmann LE, et al. Comparison of the efficacy of povidone-iodine 1.0%, 5.0%, and 10.0% irrigation combined with topical levofloxacin 0.3% as preoperative prophylaxis in cataract surgery. J Cataract Refract Surg 2013;39:994-1001.
- 374. Boden JH, Myers ML, Lee T, et al. Effect of lidocaine gel on povidone-iodine antisepsis and microbial survival. J Cataract Refract Surg 2008;34:1773-5.
- 375. Ta CN, Sinnar S, He L, et al. Prospective randomized comparison of 1-day versus 3-day application of topical levofloxacin in eliminating conjunctival flora. Eur J Ophthalmol 2007;17:689-95.
- 376. Ta CN. Topical antibiotic prophylaxis in intraocular injections. Arch Ophthalmol 2007;125:972-4.
- Ta CN. Minimizing the risk of endophthalmitis following intravitreous injections. Retina 2004;24:699-705.
- 378. Ta CN, Singh K, Egbert PR, de Kaspar HM. Prospective comparative evaluation of povidone-iodine (10% for 5 minutes versus 5% for 1 minute) as prophylaxis for ophthalmic surgery. J Cataract Refract Surg 2008;34:171-2.
- 379. Ou JI, Ta CN. Endophthalmitis prophylaxis. Ophthalmol Clin North Am 2006;19:449-56.
- Nentwich MM, Ta CN, Kreutzer TC, et al. Incidence of postoperative endophthalmitis from 1990 to 2009 using povidone-iodine but no intracameral antibiotics at a single academic institution. J Cataract Refract Surg 2015;41:58-66.
- 381. Moss JM, Sanislo SR, Ta CN. A prospective randomized evaluation of topical gatifloxacin on conjunctival flora in patients undergoing intravitreal injections. Ophthalmology 2009;116:1498-501.
- 382. Hariprasad SM, Shah GK, Mieler WF, et al. Vitreous and aqueous penetration of orally administered moxifloxacin in humans. Arch Ophthalmol 2006;124:178-82.
- 383. Kampougeris G, Antoniadou A, Kavouklis E, et al. Penetration of moxifloxacin into the human aqueous humour after oral administration. Br J Ophthalmol 2005;89:628-31.
- Garcia-Saenz MC, Arias-Puente A, Fresnadillo-Martinez MJ, Carrasco-Font C. Human aqueous humor levels of oral ciprofloxacin, levofloxacin, and moxifloxacin. J Cataract Refract Surg 2001;27:1969-74.
- 385. Ng JQ, Morlet N, Pearman JW, et al. Management and outcomes of postoperative endophthalmitis since the Endophthalmitis Vitrectomy Study: the Endophthalmitis Population Study of Western Australia (EPSWA)'s fifth report. Ophthalmology 2005;112:1199-206.
- 386. Montan PG, Wejde G, Koranyi G, Rylander M. Prophylactic intracameral cefuroxime. Efficacy in preventing endophthalmitis after cataract surgery. J Cataract Refract Surg 2002;28:977-81.
- 387. Garat M, Moser CL, Alonso-Tarres C, et al. Intracameral cefazolin to prevent endophthalmitis in cataract surgery: 3-year retrospective study. J Cataract Refract Surg 2005;31:2230-4.
- 388. Ndegwa S, Cimon K, Severn M. Rapid Response Report: Peer-Reviewed Summary with Critical Appraisal. Intracameral antibiotics for the prevention of endophthalmitis post-cataract surgery: review of clinical and cost-effectiveness and guidelines. Ottawa, Canada: Canadian Agency for Drugs and Technologies in Health; October 2010. Available at: www.cadth.ca/media/pdf/M0019 Intracameral Antiobiotics L3 e.pdf. Accessed May 27, 2016.
- 389. Romero P, Mendez I, Salvat M, et al. Intracameral cefazolin as prophylaxis against endophthalmitis in cataract surgery. J Cataract Refract Surg 2006;32:438-41.

- 390. Wejde G, Montan P, Lundstrom M, et al. Endophthalmitis following cataract surgery in Sweden: national prospective survey 1999-2001. Acta Ophthalmol Scand 2005;83:7-10.
- 391. Yu-Wai-Man P, Morgan SJ, Hildreth AJ, et al. Efficacy of intracameral and subconjunctival cefuroxime in preventing endophthalmitis after cataract surgery. J Cataract Refract Surg 2008;34:447-51.
- 392. Matsuura K, Miyoshi T, Suto C, et al. Efficacy and safety of prophylactic intracameral moxifloxacin injection in Japan. J Cataract Refract Surg 2013;39:1702-6.
- 393. Beselga D, Campos A, Castro M, et al. Postcataract surgery endophthalmitis after introduction of the ESCRS protocol: a 5-year study. Eur J Ophthalmol 2014;24:516-9.
- 394. Myneni J, Desai SP, Jayamanne DG. Reduction in postoperative endophthalmitis with intracameral cefuroxime. J Hosp Infect 2013;84:326-8.
- 395. Shorstein NH, Winthrop KL, Herrinton LJ. Decreased postoperative endophthalmitis rate after institution of intracameral antibiotics in a Northern California eye department. J Cataract Refract Surg 2013;39:8-14.
- 396. Barreau G, Mounier M, Marin B, et al. Intracameral cefuroxime injection at the end of cataract surgery to reduce the incidence of endophthalmitis: French study. J Cataract Refract Surg 2012;38:1370-5.
- 397. Romero-Aroca P, Mendez-Marin I, Salvat-Serra M, et al. Results at seven years after the use of intracamerular cefazolin as an endophthalmitis prophylaxis in cataract surgery. BMC Ophthalmol 2012;12:2.
- 398. Tan CS, Wong HK, Yang FP. Epidemiology of postoperative endophthalmitis in an Asian population: 11-year incidence and effect of intracameral antibiotic agents. J Cataract Refract Surg 2012;38:425-30.
- 399. Garcia-Saenz MC, Arias-Puente A, Rodriguez-Caravaca G, Banuelos JB. Effectiveness of intracameral cefuroxime in preventing endophthalmitis after cataract surgery Ten-year comparative study. J Cataract Refract Surg 2010;36:203-7.
- 400. Haripriya A, Chang DF, Namburar S, et al. Efficacy of intracameral moxifloxacin endophthalmitis prophylaxis at Aravind Eye Hospital. Ophthalmology 2016;123:302-8.
- 401. Witkin AJ, Shah AR, Engstrom RE, et al. Postoperative hemorrhagic occlusive retinal vasculitis: expanding the clinical spectrum and possible association with vancomycin. Ophthalmology 2015;122:1438-51.
- 402. Arbisser LB. Safety of intracameral moxifloxacin for prophylaxis of endophthalmitis after cataract surgery. J Cataract Refract Surg 2008;34:1114-20.
- 403. Espiritu CR, Caparas VL, Bolinao JG. Safety of prophylactic intracameral moxifloxacin 0.5% ophthalmic solution in cataract surgery patients. J Cataract Refract Surg 2007;33:63-8.
- 404. Lane SS, Osher RH, Masket S, Belani S. Evaluation of the safety of prophylactic intracameral moxifloxacin in cataract surgery. J Cataract Refract Surg 2008;34:1451-9.
- 405. Delyfer MN, Rougier MB, Leoni S, et al. Ocular toxicity after intracameral injection of very high doses of cefuroxime during cataract surgery. J Cataract Refract Surg 2011;37:271-8.
- 406. Faure C, Perreira D, Audo I. Retinal toxicity after intracameral use of a standard dose of cefuroxime during cataract surgery. Doc Ophthalmol 2015;130:57-63.
- 407. Olavi P. Ocular toxicity in cataract surgery because of inaccurate preparation and erroneous use of 50mg/ml intracameral cefuroxime. Acta Ophthalmol 2012;90:e153-4.
- 408. Cakir B, Celik E, Aksoy NO, et al. Toxic anterior segment syndrome after uncomplicated cataract surgery possibly associated with intracamaral use of cefuroxime. Clin Ophthalmol 2015;9:493-7.
- 409. Koban Y, Genc S, Bilgin G, et al. Toxic anterior segment syndrome following phacoemulsification secondary to overdose of intracameral gentamicin. Case Rep Med 2014;2014:143564.
- 410. Wong DC, Waxman MD, Herrinton LJ, Shorstein NH. Transient macular edema after intracameral injection of a moderately elevated dose of cefuroxime during phacoemulsification surgery. JAMA Ophthalmol 2015;133:1194-7.
- 411. Chang DF, Braga-Mele R, Mamalis N, et al, ASCRS Cataract Clinical Committee. Prophylaxis of postoperative endophthalmitis after cataract surgery: results of the 2007 ASCRS member survey. J Cataract Refract Surg 2007;33:1801-5.
- 412. Asencio MA, Huertas M, Carranza R, et al. Impact of changes in antibiotic prophylaxis on postoperative endophthalmitis in a Spanish hospital. Ophthalmic Epidemiol 2014;21:45-50.
- 413. Murphy CC, Nicholson S, Quah SA, et al. Pharmacokinetics of vancomycin following intracameral bolus injection in patients undergoing phacoemulsification cataract surgery. Br J Ophthalmol 2007;91:1350-3.
- 414. Brown GC, Eagle RC, Shakin EP, et al. Retinal toxicity of intravitreal gentamicin. Arch Ophthalmol 1990;108:1740-4.

- 415. Rosha DS, Ng JQ, Morlet N, et al. Cataract surgery practice and endophthalmitis prevention by Australian and New Zealand ophthalmologists. Clin Experiment Ophthalmol 2006;34:535-44.
- 416. Dave SB, Toma HS, Kim SJ. Ophthalmic antibiotic use and multidrug-resistant staphylococcus epidermidis: a controlled, longitudinal study. Ophthalmology 2011;118:2035-40.
- 417. Chang DF, Braga-Mele R, Henderson BA, et al. Antibiotic prophylaxis of postoperative endophthalmitis after cataract surgery: results of the 2014 ASCRS member survey. J Cataract Refract Surg 2015;41:1300-5.
- 418. Jensen MK, Fiscella RG, Crandall AS, et al. A retrospective study of endophtalmitis rates comparing quinolone antibiotics. Am J Ophthalmol 2005;139:141-8.
- 419. Jensen MK, Fiscella RG, Moshirfar M, Mooney B. Third- and fourth-generation fluoroquinolones: retrospective comparison of endophthalmitis after cataract surgery performed over 10 years. J Cataract Refract Surg 2008;34:1460-7.
- 420. Lloyd JC, Braga-Mele R. Incidence of postoperative endophthalmitis in a high-volume cataract surgicentre in Canada. Can J Ophthalmol 2009;44:288-92.
- 421. Sharifi E, Porco TC, Naseri A. Cost-effectiveness analysis of intracameral cefuroxime use for prophylaxis of endophthalmitis after cataract surgery. Ophthalmology 2009;116:1887-96.
- 422. Weston K, Nicholson R, Bunce C, Yang YF. An 8-year retrospective study of cataract surgery and postoperative endophthalmitis: injectable intraocular lenses may reduce the incidence of postoperative endophthalmitis. Br J Ophthalmol 2015;99:1377-80.
- 423. Wu PC, Li M, Chang SJ, et al. Risk of endophthalmitis after cataract surgery using different protocols for povidone- iodine preoperative disinfection. J Ocul Pharmacol Ther 2006;22:54-61.
- 424. Linertova R, Abreu-Gonzalez R, Garcia-Perez L, et al. Intracameral cefuroxime and moxifloxacin used as endophthalmitis prophylaxis after cataract surgery: systematic review of effectiveness and cost-effectiveness. Clin Ophthalmol 2014;8:1515-22.
- 425. Mamalis N, Edelhauser HF, Dawson DG, et al. Toxic anterior segment syndrome. J Cataract Refract Surg 2006;32:324-33.
- 426. Mamalis N. Toxic anterior segment syndrome. Focal Points: Clinical Modules for Ophthalmologists. Module 10. San Francisco, CA: American Academy of Ophthalmology; 2009.
- 427. Rishi E, Rishi P, Sengupta S, et al. Acute postoperative Bacillus cereus endophthalmitis mimicking toxic anterior segment syndrome. Ophthalmology 2013;120:181-5.
- 428. Bodnar Z, Clouser S, Mamalis N. Toxic anterior segment syndrome: Update on the most common causes. J Cataract Refract Surg 2012;38:1902-10.
- 429. Suzuki T, Ohashi Y, Oshika T, et al. Outbreak of late-onset toxic anterior segment syndrome after implantation of one-piece intraocular lenses. Am J Ophthalmol 2015;159:934-9 e2.
- 430. Miyake G, Ota I, Miyake K, et al. Late-onset toxic anterior segment syndrome. J Cataract Refract Surg 2015;41:666-9.
- 431. Nizamani NB, Bhutto IA, Talpur KI. Cluster of Urrets-Zavalia syndrome: a sequel of toxic anterior segment syndrome. Br J Ophthalmol 2013;97:976-9.
- 432. Litwin AS, Pimenides D. Toxic anterior segment syndrome after cataract surgery secondary to subconjunctival gentamicin. J Cataract Refract Surg 2012;38:2196-7.
- 433. Moisseiev E, Barak A. Toxic anterior segment syndrome outbreak after vitrectomy and silicone oil injection. Eur J Ophthalmol 2012;22:803-7.
- 434. Ari S, Caca I, Sahin A, Cingu AK. Toxic anterior segment syndrome subsequent to pediatric cataract surgery. Cutan Ocul Toxicol 2012;31:53-7.
- 435. Tamashiro NS, Souza RQ, Goncalves CR, et al. Cytotoxicity of cannulas for ophthalmic surgery after cleaning and sterilization: evaluation of the use of enzymatic detergent to remove residual ophthalmic viscosurgical device material. J Cataract Refract Surg 2013;39:937-41.
- 436. Leder HA, Goodkin M, Buchen SY, et al. An investigation of enzymatic detergents as a potential cause of toxic anterior segment syndrome. Ophthalmology 2012;119:e30-5.
- 437. Cutler Peck CM, Brubaker J, Clouser S, et al. Toxic anterior segment syndrome: common causes. J Cataract Refract Surg 2010;36:1073-80.
- 438. Sengupta S, Chang DF, Gandhi R, et al. Incidence and long-term outcomes of toxic anterior segment syndrome at Aravind Eye Hospital. J Cataract Refract Surg 2011;37:1673-8.
- 439. American Academy of Ophthalmology Wrong-Site Task Force. Patient Safety Statement. Recommendations of American Academy of Ophthalmology Wrong-Site Task Force. San Francisco, CA: American Academy of Ophthalmology; 2014. Available at: <u>www.aao.org/guidelinesbrowse?filter=patientsafetyguideline</u>. Accessed May 27, 2016.
- 440. de Vries EN, Prins HA, Crolla RM, et al. Effect of a comprehensive surgical safety system on patient outcomes. N Engl J Med 2010;363:1928-37.

- 441. Kelly SP, Jalil A. Wrong intraocular lens implant; learning from reported patient safety incidents. Eye (Lond) 2011;25:730-4.
- 442. Stahel PF, Sabel AL, Victoroff MS, et al. Wrong-site and wrong-patient procedures in the universal protocol era: analysis of a prospective database of physician self-reported occurrences. Arch Surg 2010;145:978-84.
- 443. Pennsylvania Patient Safety Authority. The evidence base for the principles for reliable performance of the Universal Protocol. 2010. Available at: <u>www.patientsafetyauthority.org/EducationalTools/PatientSafetyTools/PWSS/Documents/u_principles.pdf</u>. Accessed May 27, 2016.
- 444. Pennsylvania Patient Safety Authority. Quarterly update: the evidence base for best practices for preventing wrong-site surgery. Pa Patient Saf Advis [online]. Dec 2010. Available at: <u>www.patientsafetyauthority.org/ADVISORIES/AdvisoryLibrary/2010/Dec7%284%29/Pages/151.aspx</u>. Accessed May 27, 2016.
- 445. Analeyz, Inc. 2010 survey practice styles and preferences of U.S. ASCRS members. Available at: <u>www.analeyz.com/</u>. Accessed May 27, 2016.
- 446. Fine IH, Hoffman RS, Packer M. Profile of clear corneal cataract incisions demonstrated by ocular coherence tomography. J Cataract Refract Surg 2007;33:94-7.
- 447. Alio J, Rodriguez-Prats JL, Galal A, Ramzy M. Outcomes of microincision cataract surgery versus coaxial phacoemulsification. Ophthalmology 2005;112:1997-2003.
- 448. Elkady B, Pinero D, Alio JL. Corneal incision quality: microincision cataract surgery versus microcoaxial phacoemulsification. J Cataract Refract Surg 2009;35:466-74.
- 449. Calladine D, Packard R. Clear corneal incision architecture in the immediate postoperative period evaluated using optical coherence tomography. J Cataract Refract Surg 2007;33:1429-35.
- 450. Mardelli PG, Mehanna CJ. Phacoanaphylactic endophthalmitis secondary to capsular block syndrome. J Cataract Refract Surg 2007;33:921-2.
- 451. Wilczynski M, Supady E, Loba P, et al. Comparison of early corneal endothelial cell loss after coaxial phacoemulsification through 1.8 mm microincision and bimanual phacoemulsification through 1.7 mm microincision. J Cataract Refract Surg 2009;35:1570-4.
- 452. Hu V, Hughes EH, Patel N, Whitefield LA. The effect of aqualase and phacoemulsification on the corneal endothelium. Cornea 2010;29:247-50.
- 453. Liyanage SE, Angunawela RI, Wong SC, Little BC. Anterior chamber instability caused by incisional leakage in coaxial phacoemulsification. J Cataract Refract Surg 2009;35:1003-5.
- 454. Bissen-Miyajima H. Ophthalmic viscosurgical devices. Curr Opin Ophthalmol 2008;19:50-4.
- 455. Gimbel HV, Neuhann T. Development, advantages, and methods of the continuous circular capsulorhexis technique. J Cataract Refract Surg 1990;16:31-7.
- 456. Nixon DR. In vivo digital imaging of the square-edged barrier effect of a silicone intraocular lens. J Cataract Refract Surg 2004;30:2574-84.
- 457. Koch DD, Liu JF. Multilamellar hydrodissection in phacoemulsification and planned extracapsular surgery. J Cataract Refract Surg 1990;16:559-62.
- 458. Peng Q, Apple DJ, Visessook N, et al. Surgical prevention of posterior capsule opacification. Part 2: Enhancement of cortical cleanup by focusing on hydrodissection. J Cataract Refract Surg 2000;26:188-97.
- 459. Vasavada AR, Dholakia SA, Raj SM, Singh R. Effect of cortical cleaving hydrodissection on posterior capsule opacification in age-related nuclear cataract. J Cataract Refract Surg 2006;32:1196-200.
- 460. Gimbel HV. Divide and conquer nucleofractis phacoemulsification: development and variations. J Cataract Refract Surg 1991;17:281-91.
- 461. Koch PS, Katzen LE. Stop and chop phacoemulsification. J Cataract Refract Surg 1994;20:566-70.
- Packer M, Fine IH, Hoffman RS, Smith JH. Techniques of phacoemulsification. In: Tasman W, Jaeger EA, eds. Duane's Ophthalmology on DVD-ROM. 2009 edition. Philadelphia, PA: Lippincott Williams & Wilkins; 2009:chapter 7.
- 463. Chang DF, Masket S, Miller KM, et al, ASCRS Cataract Clinical Committee. Complications of sulcus placement of single-piece acrylic intraocular lenses: recommendations for backup IOL implantation following posterior capsule rupture. J Cataract Refract Surg 2009;35:1445-58.
- 464. Hoffman RS, Fine IH, Packer M. Scleral fixation without conjunctival dissection. J Cataract Refract Surg 2006;32:1907-12.
- 465. Rainer G, Stifter E, Luksch A, Menapace R. Comparison of the effect of Viscoat and DuoVisc on postoperative intraocular pressure after small-incision cataract surgery. J Cataract Refract Surg 2008;34:253-7.

- 466. Vasavada AR, Praveen MR, Pandita D, et al. Effect of stromal hydration of clear corneal incisions: quantifying ingress of trypan blue into the anterior chamber after phacoemulsification. J Cataract Refract Surg 2007;33:623-7.
- Chee SP. Clear corneal incision leakage after phacoemulsification--detection using povidone iodine 5%. Int Ophthalmol 2005;26:175-9.
- 468. Masket S, Hovanesian JA, Levenson J, et al. Hydrogel sealant versus sutures to prevent fluid egress after cataract surgery. J Cataract Refract Surg 2014;40:2057-66.
- 469. Nielsen PJ. Prospective evaluation of surgically induced astigmatism and astigmatic keratotomy effects of various self-sealing small incisions. J Cataract Refract Surg 1995;21:43-8.
- 470. Kaufmann C, Peter J, Ooi K, et al. Queen Elizabeth Astigmatism Study Group. Limbal relaxing incisions versus on-axis incisions to reduce corneal astigmatism at the time of cataract surgery. J Cataract Refract Surg 2005;31:2261-5.
- 471. Borasio E, Mehta JS, Maurino V. Surgically induced astigmatism after phacoemulsification in eyes with mild to moderate corneal astigmatism: temporal versus on-axis clear corneal incisions. J Cataract Refract Surg 2006;32:565-72.
- 472. Olson RJ, Crandall AS. Prospective randomized comparison of phacoemulsification cataract surgery with a 3.2-mm vs a 5.5-mm sutureless incision. Am J Ophthalmol 1998;125:612-20.
- 473. Laurell CG, Zetterstrom C, Philipson B, Syren-Nordqvist S. Randomized study of the blood-aqueous barrier reaction after phacoemulsification and extracapsular cataract extraction. Acta Ophthalmol Scand 1998;76:573-8.
- 474. Pande MV, Spalton DJ, Kerr-Muir MG, Marshall J. Postoperative inflammatory response to phacoemulsification and extracapsular cataract surgery: aqueous flare and cells. J Cataract Refract Surg 1996;22 Suppl 1:770-4.
- 475. Steinert RF, Brint SF, White SM, Fine IH. Astigmatism after small incision cataract surgery. A prospective, randomized, multicenter comparison of 4- and 6.5-mm incisions. Ophthalmology 1991;98:417-23; discussion 423-4.
- 476. Hayashi K, Hayashi H, Nakao F, Hayashi F. The correlation between incision size and corneal shape changes in sutureless cataract surgery. Ophthalmology 1995;102:550-6.
- 477. Kohnen T, Dick B, Jacobi KW. Comparison of the induced astigmatism after temporal clear corneal tunnel incisions of different sizes. J Cataract Refract Surg 1995;21:417-24.
- 478. Oshika T, Nagahara K, Yaguchi S, et al. Three year prospective, randomized evaluation of intraocular lens implantation through 3.2 and 5.5 mm incisions. J Cataract Refract Surg 1998;24:509-14.
- 479. Wang J, Zhang EK, Fan WY, et al. The effect of micro-incision and small-incision coaxial phacoemulsification on corneal astigmatism. Clin Experiment Ophthalmol 2009;37:664-9.
- 480. Masket S, Wang L, Belani S. Induced astigmatism with 2.2- and 3.0-mm coaxial phacoemulsification incisions. J Refract Surg 2009;25:21-4.
- 481. Packer M, Fine IH, Hoffman RS. Refractive lens surgery. Ophthalmol Clin North Am 2006;19:77-88, vi.
- 482. Denoyer A, Denoyer L, Marotte D, et al. Intraindividual comparative study of corneal and ocular wavefront aberrations after biaxial microincision versus coaxial small-incision cataract surgery. Br J Ophthalmol 2008;92:1679-84.
- 483. Dewey S, Beiko G, Braga-Mele R, et al. ASCRS Cataract Clinical Committee, Instrumentation and IOLs Subcommittee. Microincisions in cataract surgery. J Cataract Refract Surg 2014;40:1549-57.
- 484. Zhang JY, Feng YF, Cai JQ. Phacoemulsification versus manual small-incision cataract surgery for age-related cataract: meta-analysis of randomized controlled trials. Clin Experiment Ophthalmol 2013;41:379-86.
- 485. de Silva SR, Riaz Y, Evans JR. Phacoemulsification with posterior chamber intraocular lens versus extracapsular cataract extraction (ECCE) with posterior chamber intraocular lens for age-related cataract. Cochrane Database Syst Rev 2014, Issue 1. Art. No.: CD008812. DOI: 10.1002/14651858.CD008812.pub2.
- 486. Riaz Y, de Silva SR, Evans JR. Manual small incision cataract surgery (MSICS) with posterior chamber intraocular lens versus phacoemulsification with posterior chamber intraocular lens for agerelated cataract. Cochrane Database Syst Rev 2013, Issue 10. Art. No.: CD008813. DOI: 10.1002/14651858.CD008813.pub2.
- 487. Ang M, Evans JR, Mehta JS. Manual small incision cataract surgery (MSICS) with posterior chamber intraocular lens versus extracapsular cataract extraction (ECCE) with posterior chamber intraocular lens for age-related cataract. Cochrane Database Syst Rev 2012, Issue 4. Art. No.: CD008811. DOI: 10.1002/14651858.CD008811.pub2.

- 488. Ang M, Evans JR, Mehta JS. Manual small incision cataract surgery (MSICS) with posterior chamber intraocular lens versus extracapsular cataract extraction (ECCE) with posterior chamber intraocular lens for age-related cataract. Cochrane Database Syst Rev 2014, Issue 11. Art. No.: CD008811. DOI: 10.1002/14651858.CD008811.pub3.
- 489. Masket S, Sarayba M, Ignacio T, Fram N. Femtosecond laser-assisted cataract incisions: architectural stability and reproducibility. J Cataract Refract Surg 2010;36:1048-9.
- 490. Nejima R, Terada Y, Mori Y, et al. Clinical utility of femtosecond laser-assisted astigmatic keratotomy after cataract surgery. Jpn J Ophthalmol 2015;59:209-15.
- 491. Chan TC, Cheng GP, Wang Z, et al. Vector analysis of corneal astigmatism after combined femtosecond-assisted phacoemulsification and arcuate keratotomy. Am J Ophthalmol 2015;160:250-5.
- 492. Nagy ZZ, Dunai A, Kranitz K, et al. Evaluation of femtosecond laser-assisted and manual clear corneal incisions and their effect on surgically induced astigmatism and higher-order aberrations. J Refract Surg 2014;30:522-5.
- 493. Quiñones A, Gleitsmann K, Freeman M, et al. Benefits and Harms of Femtosecond Laser Assisted Cataract Surgery: A Systematic Review. VA-ESP Project #05-225; 2013.
- 494. Abell RG, Vote BJ. Cost-effectiveness of femtosecond laser-assisted cataract surgery versus phacoemulsification cataract surgery. Ophthalmology 2014;121:10-6.
- 495. Bartlett JD, Miller KM. The economics of femtosecond laser-assisted cataract surgery. Curr Opin Ophthalmol 2016;27:76-81.
- 496. Sutton G, Bali SJ, Hodge C. Femtosecond cataract surgery: transitioning to laser cataract. Curr Opin Ophthalmol 2013;24:3-8.
- 497. Bali SJ, Hodge C, Lawless M, et al. Early experience with the femtosecond laser for cataract surgery. Ophthalmology 2012;119:891-9.
- 498. Jun JH, Hwang KY, Chang SD, Joo CK. Pupil-size alterations induced by photodisruption during femtosecond laser-assisted cataract surgery. J Cataract Refract Surg 2015;41:278-85.
- 499. Toto L, Calienno R, Curcio C, et al. Induced inflammation and apoptosis in femtosecond laserassisted capsulotomies and manual capsulorhexes: an immunohistochemical study. J Refract Surg 2015;31:290-4.
- 500. Grewal DS, Basti S. Intraoperative reverse pupillary block during femtosecond laser-assisted cataract surgery in a patient with phacomorphic angle closure. J Cataract Refract Surg 2014;40:1909-12.
- 501. Alder BD, Donaldson KE. Comparison of 2 techniques for managing posterior polar cataracts: Traditional phacoemulsification versus femtosecond laser-assisted cataract surgery. J Cataract Refract Surg 2014;40:2148-51.
- 502. Abell RG, Davies PE, Phelan D, et al. Anterior capsulotomy integrity after femtosecond laser-assisted cataract surgery. Ophthalmology 2014;121:17-24.
- 503. Abell RG, Darian-Smith E, Kan JB, et al. Femtosecond laser-assisted cataract surgery versus standard phacoemulsification cataract surgery: outcomes and safety in more than 4000 cases at a single center. J Cataract Refract Surg 2015;41:47-52.
- 504. Auffarth GU, Reddy KP, Ritter R, et al. Comparison of the maximum applicable stretch force after femtosecond laser-assisted and manual anterior capsulotomy. J Cataract Refract Surg 2013;39:105-9.
- 505. Bala C, Xia Y, Meades K. Electron microscopy of laser capsulotomy edge: Interplatform comparison. J Cataract Refract Surg 2014;40:1382-9.
- 506. Roberts TV, Lawless M, Sutton G, Hodge C. Anterior capsule integrity after femtosecond laserassisted cataract surgery. J Cataract Refract Surg 2015;41:1109-10.
- 507. Day AC, Gartry DS, Maurino V, et al. Efficacy of anterior capsulotomy creation in femtosecond laserassisted cataract surgery. J Cataract Refract Surg 2014;40:2031-4.
- 508. Roberts TV, Sutton G, Lawless MA, et al. Capsular block syndrome associated with femtosecond laser-assisted cataract surgery. J Cataract Refract Surg 2011;37:2068-70.
- 509. Roberts TV, Lawless M, Bali SJ, et al. Surgical outcomes and safety of femtosecond laser cataract surgery: a prospective study of 1500 consecutive cases. Ophthalmology 2013;120:227-33.
- 510. Donaldson KE, Braga-Mele R, Cabot F, et al. Femtosecond laser-assisted cataract surgery. J Cataract Refract Surg 2013;39:1753-63.
- 511. Chen M, Swinney C. Comparing the intraoperative complication rate of femtosecond laser-assisted cataract surgery to traditional phacoemulsification. Int J Ophthalmol 2015;8:201-3.
- 512. Kranitz K, Takacs A, Mihaltz K, et al. Femtosecond laser capsulotomy and manual continuous curvilinear capsulorrhexis parameters and their effects on intraocular lens centration. J Refract Surg 2011;27:558-63.

- 513. Kranitz K, Mihaltz K, Sandor GL, et al. Intraocular lens tilt and decentration measured by Scheimpflug camera following manual or femtosecond laser-created continuous circular capsulotomy. J Refract Surg 2012;28:259-63.
- 514. Nagy ZZ, Kranitz K, Takacs AI, et al. Comparison of intraocular lens decentration parameters after femtosecond and manual capsulotomies. J Refract Surg 2011;27:564-9.
- 515. Filkorn T, Kovacs I, Takacs A, et al. Comparison of IOL power calculation and refractive outcome after laser refractive cataract surgery with a femtosecond laser versus conventional phacoemulsification. J Refract Surg 2012;28:540-4.
- 516. Conrad-Hengerer I, Al Sheikh M, Hengerer FH, et al. Comparison of visual recovery and refractive stability between femtosecond laser-assisted cataract surgery and standard phacoemulsification: sixmonth follow-up. J Cataract Refract Surg 2015;41:1356-64.
- 517. Hatch KM, Schultz T, Talamo JH, Dick HB. Femtosecond laser-assisted compared with standard cataract surgery for removal of advanced cataracts. J Cataract Refract Surg 2015;41:1833-8.
- 518. Abell RG, Kerr NM, Vote BJ. Femtosecond laser-assisted cataract surgery compared with conventional cataract surgery. Clin Experiment Ophthalmol 2013;41:455-62.
- 519. Packer M, Solomon JD. Impact of crystalline lens opacification on effective phacoemulsification time in femtosecond laser-assisted cataract surgery. Am J Ophthalmol 2014;157:1323-4.
- 520. Nagy ZZ, Ecsedy M, Kovacs I, et al. Macular morphology assessed by optical coherence tomography image segmentation after femtosecond laser-assisted and standard cataract surgery. J Cataract Refract Surg 2012;38:941-6.
- 521. Levitz L, Reich J, Roberts TV, Lawless M. Incidence of cystoid macular edema: femtosecond laserassisted cataract surgery versus manual cataract surgery. J Cataract Refract Surg 2015;41:683-6.
- 522. Ewe SY, Oakley CL, Abell RG, et al. Cystoid macular edema after femtosecond laser-assisted versus phacoemulsification cataract surgery. J Cataract Refract Surg 2015;41:2373-8.
- 523. Ewe SY, Abell RG, Oakley CL, et al. A comparative cohort study of visual outcomes in femtosecond laser-assisted versus phacoemulsification cataract surgery. Ophthalmology 2016;123:178-82.
- 524. Day AC, Gore DM, Bunce C, Evans JR. Laser-assisted cataract surgery versus standard ultrasound phacoemulsification cataract surgery. Cochrane Database Syst Rev 2016, Issue 7. Art. No.: CD010735. DOI: 10.1002/14651858.CD010735.pub2.
- 525. Baranano AE, Wu J, Mazhar K, et al, Los Angeles Latino Eye Study Group. Visual acuity outcomes after cataract extraction in adult latinos: the Los Angeles Latino Eye Study. Ophthalmology 2008;115:815-21.
- 526. Dick HB, Augustin AJ. Lens implant selection with absence of capsular support. Curr Opin Ophthalmol 2001;12:47-57.
- 527. Werner L, Tetz M, Feldmann I, Bucker M. Evaluating and defining the sharpness of intraocular lenses: microedge structure of commercially available square-edged hydrophilic intraocular lenses. J Cataract Refract Surg 2009;35:556-66.
- 528. Bournas P, Drazinos S, Kanellas D, et al. Dysphotopsia after cataract surgery: comparison of four different intraocular lenses. Ophthalmologica 2007;221:378-83.
- 529. Buehl W, Findl O. Effect of intraocular lens design on posterior capsule opacification. J Cataract Refract Surg 2008;34:1976-85.
- 530. Vock L, Crnej A, Findl O, et al. Posterior capsule opacification in silicone and hydrophobic acrylic intraocular lenses with sharp-edge optics six years after surgery. Am J Ophthalmol 2009;147:683-90.
- 531. Kohnen S, Ferrer A, Brauweiler P. Visual function in pseudophakic eyes with poly(methyl methacrylate), silicone, and acrylic intraocular lenses. J Cataract Refract Surg 1996;22 Suppl 2:1303-7.
- 532. Brown DC, Grabow HB, Martin RG, et al. Staar Collamer intraocular lens: clinical results from the phase I FDA core study. J Cataract Refract Surg 1998;24:1032-8.
- 533. Cheng JW, Wei RL, Cai JP, et al. Efficacy of different intraocular lens materials and optic edge designs in preventing posterior capsular opacification: a meta-analysis. Am J Ophthalmol 2007;143:428-36.
- 534. Henriksen BS, Kinard K, Olson RJ. Effect of intraocular lens glistening size on visual quality. J Cataract Refract Surg 2015;41:1190-8.
- 535. Chang A, Kugelberg M. Glistenings 9 years after phacoemulsification in hydrophobic and hydrophilic acrylic intraocular lenses. J Cataract Refract Surg 2015;41:1199-204.
- 536. Miyata K, Honbo M, Nejima R, et al. Long-term observation of surface light scattering in a foldable acrylic intraocular lens. J Cataract Refract Surg 2015;41:1205-9.
- 537. Werner L. Glistenings and surface light scattering in intraocular lenses. J Cataract Refract Surg 2010;36:1398-420.

- 538. Li N, Chen X, Zhang J, et al. Effect of AcrySof versus silicone or polymethyl methacrylate intraocular lens on posterior capsule opacification. Ophthalmology 2008;115:830-8.
- 539. Richter-Mueksch S, Kahraman G, Amon M, et al. Uveal and capsular biocompatibility after implantation of sharp-edged hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses in eyes with pseudoexfoliation syndrome. J Cataract Refract Surg 2007;33:1414-8.
- 540. Schild G, Amon M, Abela-Formanek C, et al. Uveal and capsular biocompatibility of a single-piece, sharp-edged hydrophilic acrylic intraocular lens with collagen (Collamer): 1-year results. J Cataract Refract Surg 2004;30:1254-8.
- 541. Abela-Formanek C, Amon M, Schild G, et al. Uveal and capsular biocompatibility of hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses. J Cataract Refract Surg 2002;28:50-61.
- 542. Werner L, Wilbanks G, Nieuwendaal CP, et al. Localized opacification of hydrophilic acrylic intraocular lenses after procedures using intracameral injection of air or gas. J Cataract Refract Surg 2015;41:199-207.
- 543. Mamalis N. Incision width after phacoemulsification with foldable intraocular lens implantation. J Cataract Refract Surg 2000;26:237-41.
- 544. Shimizu K, Kobayashi K, Takayama S, Zhaobin G. Preloaded injector for intraocular lens implantation without the use of ophthalmic viscosurgical devices. J Cataract Refract Surg 2008;34:1157-60.
- 545. Wagoner MD, Cox TA, Ariyasu RG, et al. Intraocular lens implantation in the absence of capsular support: a report by the American Academy of Ophthalmology. Ophthalmology 2003;110:840-59.
- 546. Donaldson KE, Gorscak JJ, Budenz DL, et al. Anterior chamber and sutured posterior chamber intraocular lenses in eyes with poor capsular support. J Cataract Refract Surg 2005;31:903-9.
- 547. Kwong YY, Yuen HK, Lam RF, et al. Comparison of outcomes of primary scleral-fixated versus primary anterior chamber intraocular lens implantation in complicated cataract surgeries. Ophthalmology 2007;114:80-5.
- 548. Condon GP, Masket S, Kranemann C, et al. Small-incision iris fixation of foldable intraocular lenses in the absence of capsule support. Ophthalmology 2007;114:1311-8.
- 549. Kusaka S, Kodama T, Ohashi Y. Condensation of silicone oil on the posterior surface of a silicone intraocular lens during vitrectomy. Am J Ophthalmol 1996;121:574-5.
- 550. Porter RG, Peters JD, Bourke RD. De-misting condensation on intraocular lenses. Ophthalmology 2000;107:778-82.
- 551. Suto C. Sliding scale of IOL power for sulcus fixation using computer simulation. J Cataract Refract Surg 2004;30:2452-4.
- 552. Bayramlar H, Hepsen IF, Yilmaz H. Myopic shift from the predicted refraction after sulcus fixation of PMMA posterior chamber intraocular lenses. Can J Ophthalmol 2006;41:78-82.
- 553. Gimbel HV, DeBroff BM. Intraocular lens optic capture. J Cataract Refract Surg 2004;30:200-6.
- 554. Altmann GE, Nichamin LD, Lane SS, Pepose JS. Optical performance of 3 intraocular lens designs in the presence of decentration. J Cataract Refract Surg 2005;31:574-85.
- 555. Wang L, Koch DD. Effect of decentration of wavefront-corrected intraocular lenses on the higherorder aberrations of the eye. Arch Ophthalmol 2005;123:1226-30.
- 556. Assia EI, Nemet A, Sachs D. Bilateral spontaneous subluxation of scleral-fixated intraocular lenses. J Cataract Refract Surg 2002;28:2214-6.
- 557. Price MO, Price FW Jr., Werner L, et al. Late dislocation of scleral-sutured posterior chamber intraocular lenses. J Cataract Refract Surg 2005;31:1320-6.
- 558. Sasahara M, Kiryu J, Yoshimura N. Endoscope-assisted transscleral suture fixation to reduce the incidence of intraocular lens dislocation. J Cataract Refract Surg 2005;31:1777-80.
- 559. Kamal AM, Hanafy M, Ehsan A, Tomerak RH. Ultrasound biomicroscopy comparison of ab interno and ab externo scleral fixation of posterior chamber intraocular lenses. J Cataract Refract Surg 2009;35:881-4.
- 560. Mura JJ, Pavlin CJ, Condon GP, et al. Ultrasound biomicroscopic analysis of iris-sutured foldable posterior chamber intraocular lenses. Am J Ophthalmol 2010;149:245-52.
- 561. Kumar DA, Agarwal A, Chandrasekar R, Priyanka V. Long-term assessment of tilt of glued intraocular lenses: an optical coherence tomography analysis 5 years after surgery. Ophthalmology 2015;122:48-55.
- 562. Ashok Kumar D, Agarwal A, Chandrasekar R. Clinical outcomes of glued transscleral fixated intraocular lens in functionally one-eyed patients. Eye Contact Lens 2014;40:e23-8.
- 563. Röck D, Bartz-Schmidt KU, Röck T, Yoeruek E. Air bubble-induced high intraocular pressure after Descemet membrane endothelial keratoplasty. Cornea 2016;35:1035-9.

- 564. Bellucci R, Scialdone A, Buratto L, et al. Visual acuity and contrast sensitivity comparison between Tecnis and AcrySof SA60AT intraocular lenses: A multicenter randomized study. J Cataract Refract Surg 2005;31:712-7.
- 565. Packer M, Fine IH, Hoffman RS, Piers PA. Improved functional vision with a modified prolate intraocular lens. J Cataract Refract Surg 2004;30:986-92.
- 566. Holladay JT, Piers PA, Koranyi G, et al. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg 2002;18:683-91.
- 567. Kurz S, Krummenauer F, Thieme H, Dick HB. Contrast sensitivity after implantation of a spherical versus an aspherical intraocular lens in biaxial microincision cataract surgery. J Cataract Refract Surg 2007;33:393-400.
- 568. Packer M, Fine IH, Hoffman RS, Piers PA. Prospective randomized trial of an anterior surface modified prolate intraocular lens. J Refract Surg 2002;18:692-6.
- 569. Shrivastava A, Singh K. The effect of cataract extraction on intraocular pressure. Curr Opin Ophthalmol 2010;21:118-22.
- 570. Kohnen T, Klaproth OK, Buhren J. Effect of intraocular lens asphericity on quality of vision after cataract removal: an intraindividual comparison. Ophthalmology 2009;116:1697-706.
- 571. Chen WR, Ye HH, Qian YY, et al. Comparison of higher-order aberrations and contrast sensitivity between Tecnis Z9001 and CeeOn 911A intraocular lenses: a prospective randomized study. Chin Med J (Engl) 2006;119:1779-84.
- 572. Ohtani S, Gekka S, Honbou M, et al. One-year prospective intrapatient comparison of aspherical and spherical intraocular lenses in patients with bilateral cataract. Am J Ophthalmol 2009;147:984-9.
- 573. Kasper T, Buhren J, Kohnen T. Intraindividual comparison of higher-order aberrations after implantation of aspherical and spherical intraocular lenses as a function of pupil diameter. J Cataract Refract Surg 2006;32:78-84.
- 574. Tzelikis PF, Akaishi L, Trindade FC, Boteon JE. Spherical aberration and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses: a comparative study. Am J Ophthalmol 2008;145:827-33.
- 575. Tzelikis PF, Akaishi L, Trindade FC, Boteon JE. Ocular aberrations and contrast sensitivity after cataract surgery with AcrySof IQ intraocular lens implantation Clinical comparative study. J Cataract Refract Surg 2007;33:1918-24.
- 576. Santhiago MR, Netto MV, Barreto J Jr, et al. Wavefront analysis, contrast sensitivity, and depth of focus after cataract surgery with aspherical intraocular lens implantation. Am J Ophthalmol 2010;149:383-9.
- 577. van Gaalen KW, Koopmans SA, Jansonius NM, Kooijman AC. Clinical comparison of the optical performance of aspheric and spherical intraocular lenses. J Cataract Refract Surg 2010;36:34-43.
- 578. Su PY, Hu FR. Intraindividual comparison of functional vision and higher order aberrations after implantation of aspheric and spherical intraocular lenses. J Refract Surg 2009;25:265-72.
- 579. Munoz G, Albarran-Diego C, Montes-Mico R, et al. Spherical aberration and contrast sensitivity after cataract surgery with the Tecnis Z9000 intraocular lens. J Cataract Refract Surg 2006;32:1320-7.
- 580. Nanavaty MA, Spalton DJ, Boyce J, et al. Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study. J Cataract Refract Surg 2009;35:663-71.
- 581. Yamaguchi T, Negishi K, Ono T, et al. Feasibility of spherical aberration correction with aspheric intraocular lenses in cataract surgery based on individual pupil diameter. J Cataract Refract Surg 2009;35:1725-33.
- 582. Baumeister M, Buhren J, Kohnen T. Tilt and decentration of spherical and aspheric intraocular lenses: effect on higher-order aberrations. J Cataract Refract Surg 2009;35:1006-12.
- 583. Packer M, Fine IH, Hoffman RS. Aspheric intraocular lens selection based on corneal wavefront. J Refract Surg 2009;25:12-20.
- 584. Montes-Mico R, Ferrer-Blasco T, Cervino A. Analysis of the possible benefits of aspheric intraocular lenses: review of the literature. J Cataract Refract Surg 2009;35:172-81.
- 585. Hoffer KJ. Biometry of 7,500 cataractous eyes. Am J Ophthalmol 1980;90:360-8, correction 890.
- 586. Grabow HB. Intraocular correction of refractive errors. In: Kershner RM, ed. Refractive Keratotomy for Cataract Surgery and the Correction of Astigmatism. Thorofare, NJ: SLACK; 1994:79-115.
- 587. Lane SS, Ernest P, Miller KM, et al. Comparison of clinical and patient-reported outcomes with bilateral AcrySof toric or spherical control intraocular lenses. J Refract Surg 2009;25:899-901.
- 588. Ruiz-Mesa R, Carrasco-Sanchez D, Diaz-Alvarez SB, et al. Refractive lens exchange with foldable toric intraocular lens. Am J Ophthalmol 2009;147:990-6.

- 589. Gills JP, Gayton JL. Reducing pre-existing astigmatism. In: Gills JP, Fenzl R, Martin RG, eds. Cataract Surgery : The State of the Art. Thorofare, NJ: SLACK; 1998:256 pages.
- 590. Till JS, Yoder PR Jr, Wilcox TK, Spielman JL. Toric intraocular lens implantation: 100 consecutive cases. J Cataract Refract Surg 2002;28:295-301.
- 591. Ferreira TB, Almeida A. Comparison of the visual outcomes and OPD-scan results of AMO Tecnis toric and Alcon Acrysof IQ toric intraocular lenses. J Refract Surg 2012;28:551-5.
- 592. Chang DF. Comparative rotational stability of single-piece open-loop acrylic and plate-haptic silicone toric intraocular lenses. J Cataract Refract Surg 2008;34:1842-7.
- 593. Medical Advisory Secretariat. Intraocular lenses for the treatment of age-related cataracts: an evidence-based analysis. Ont Health Technol Assess Ser 2009;9:1-62.
- 594. Visser N, Bauer NJ, Nuijts RM. Toric intraocular lenses: historical overview, patient selection, IOL calculation, surgical techniques, clinical outcomes, and complications. J Cataract Refract Surg 2013;39:624-37.
- 595. Hatch KM, Woodcock EC, Talamo JH. Intraocular lens power selection and positioning with and without intraoperative aberrometry. J Refract Surg 2015;31:237-42.
- 596. Miyake T, Kamiya K, Amano R, et al. Long-term clinical outcomes of toric intraocular lens implantation in cataract cases with preexisting astigmatism. J Cataract Refract Surg 2014;40:1654-60.
- 597. McDonnell PJ, Lee P, Spritzer K, et al. Associations of presbyopia with vision-targeted health-related quality of life. Arch Ophthalmol 2003;121:1577-81.
- 598. Dick HB, Krummenauer F, Schwenn O, et al. Objective and subjective evaluation of photic phenomena after monofocal and multifocal intraocular lens implantation. Ophthalmology 1999;106:1878-86.
- 599. Vaquero-Ruano M, Encinas JL, Millan I, et al. AMO array multifocal versus monofocal intraocular lenses: long-term follow-up. J Cataract Refract Surg 1998;24:118-23.
- 600. Braga-Mele R, Chang D, Dewey S, et al, ASCRS Cataract Clinical Committee. Multifocal intraocular lenses: relative indications and contraindications for implantation. J Cataract Refract Surg 2014;40:313-22.
- 601. Greenbaum S. Monovision pseudophakia. J Cataract Refract Surg 2002;28:1439-43.
- 602. Hayashi K, Ogawa S, Manabe S, Yoshimura K. Binocular visual function of modified pseudophakic monovision. Am J Ophthalmol 2015;159:232-40.
- 603. Zhang F, Sugar A, Jacobsen G, Collins M. Visual function and spectacle independence after cataract surgery: bilateral diffractive multifocal intraocular lenses versus monovision pseudophakia. J Cataract Refract Surg 2011;37:853-8.
- 604. Finkelman YM, Ng JQ, Barrett GD. Patient satisfaction and visual function after pseudophakic monovision. J Cataract Refract Surg 2009;35:998-1002.
- 605. Ito M, Shimizu K, Amano R, Handa T. Assessment of visual performance in pseudophakic monovision. J Cataract Refract Surg 2009;35:710-4.
- 606. Xu X, Zhu MM, Zou HD. Refractive versus diffractive multifocal intraocular lenses in cataract surgery: a meta-analysis of randomized controlled trials. J Refract Surg 2014;30:634-44.
- 607. Calladine D, Evans JR, Shah S, Leyland M. Multifocal versus monofocal intraocular lenses after cataract extraction. Cochrane Database Syst Rev 2012, Issue 9. Art. No.: CD003169. DOI: 10.1002/14651858.CD003169.pub3.
- 608. Woodward MA, Randleman JB, Stulting RD. Dissatisfaction after multifocal intraocular lens implantation. J Cataract Refract Surg 2009;35:992-7.
- 609. Packer M, Chu YR, Waltz KL, et al. Evaluation of the aspheric Tecnis multifocal intraocular lens: one-year results from the first cohort of the food and drug administration clinical trial. Am J Ophthalmol 2010;149:577-84.
- 610. Visser N, Beckers HJ, Bauer NJ, et al. Toric vs aspherical control intraocular lenses in patients with cataract and corneal astigmatism: a randomized clinical trial. JAMA Ophthalmol 2014;132:1462-8.
- 611. Ferreira TB, Marques EF, Rodrigues A, Montes-Mico R. Visual and optical outcomes of a diffractive multifocal toric intraocular lens. J Cataract Refract Surg 2013;39:1029-35.
- 612. Madrid-Costa D, Ruiz-Alcocer J, Ferrer-Blasco T, et al. Optical quality differences between three multifocal intraocular lenses: bifocal low add, bifocal moderate add, and trifocal. J Refract Surg 2013;29:749-54.
- 613. Hayashi K, Manabe S, Hayashi H. Visual acuity from far to near and contrast sensitivity in eyes with a diffractive multifocal intraocular lens with a low addition power. J Cataract Refract Surg 2009;35:2070-6.

- 614. Cumming JS, Colvard DM, Dell SJ, et al. Clinical evaluation of the Crystalens AT-45 accommodating intraocular lens: results of the U.S. Food and Drug Administration clinical trial. J Cataract Refract Surg 2006;32:812-25.
- 615. Pepose JS, Qazi MA, Davies J, et al. Visual performance of patients with bilateral vs combination Crystalens, ReZoom, and ReSTOR intraocular lens implants. Am J Ophthalmol 2007;144:347-57.
- 616. Ong HS, Evans JR, Allan BD. Accommodative intraocular lens versus standard monofocal intraocular lens implantation in cataract surgery. Cochrane Database Syst Rev 2014, Issue 5. Art. No.: CD009667. DOI: 10.1002/14651858.CD009667.pub2.
- 617. Takakura A, Iyer P, Adams JR, Pepin SM. Functional assessment of accommodating intraocular lenses versus monofocal intraocular lenses in cataract surgery: metaanalysis. J Cataract Refract Surg 2010;36:380-8.
- 618. Allen D. Cataract. BMJ Clin Evid 2011;2:1-24.
- 619. American Society of Cataract and Refractive Surgery. Patient post-procedure analysis. In: ASCRS National Cataract Database. Fairfax, VA: American Society of Cataract and Refractive Surgery; 1996:43, 44, 50.
- 620. Lundstrom M, Barry P, Leite E, et al. 1998 European Cataract Outcome Study: report from the European Cataract Outcome Study Group. J Cataract Refract Surg 2001;27:1176-84.
- 621. Lum F, Schein O, Schachat AP, et al. Initial two years of experience with the AAO National Eyecare Outcomes Network (NEON) cataract surgery database. Ophthalmology 2000;107:691-7.
- 622. Jaycock P, Johnston RL, Taylor H, et al. The Cataract National Dataset electronic multi-centre audit of 55,567 operations: updating benchmark standards of care in the United Kingdom and internationally. Eye (Lond) 2009;23:38-49.
- 623. Chee SP, Yang Y, Ti SE. Clinical outcomes in the first two years of femtosecond laser-assisted cataract surgery. Am J Ophthalmol 2015;159:714-9.
- 624. Albanis CV, Dwyer MA, Ernest JT. Outcomes of extracapsular cataract extraction and phacoemulsification performed in a university training program. Ophthalmic Surg Lasers 1998;29:643-8.
- 625. Blomquist PH, Rugwani RM. Visual outcomes after vitreous loss during cataract surgery performed by residents. J Cataract Refract Surg 2002;28:847-52.
- 626. Corey RP, Olson RJ. Surgical outcomes of cataract extractions performed by residents using phacoemulsification. J Cataract Refract Surg 1998;24:66-72.
- 627. Karp KO, Albanis CV, Pearlman JB, Goins KM. Outcomes of temporal clear cornea versus superior scleral tunnel phacoemulsification incisions in a university training program. Ophthalmic Surg Lasers 2001;32:228-32.
- 628. Randleman JB, Srivastava SK, Aaron MM. Phacoemulsification with topical anesthesia performed by resident surgeons. J Cataract Refract Surg 2004;30:149-54.
- 629. Tarbet KJ, Mamalis N, Theurer J, et al. Complications and results of phacoemulsification performed by residents. J Cataract Refract Surg 1995;21:661-5.
- 630. Quillen DA, Phipps SJ. Visual outcomes and incidence of vitreous loss for residents performing phacoemulsification without prior planned extracapsular cataract extraction experience. Am J Ophthalmol 2003;135:732-3.
- 631. Pouyeh B, Galor A, Junk AK, et al. Surgical and refractive outcomes of cataract surgery with toric intraocular lens implantation at a resident-teaching institution. J Cataract Refract Surg 2011;37:1623-8.
- 632. Mangione CM, Orav EJ, Lawrence MG, et al. Prediction of visual function after cataract surgery. A prospectively validated model. Arch Ophthalmol 1995;113:1305-11.
- 633. Mozaffarieh M, Heinzl H, Sacu S, Wedrich A. Clinical outcomes of phacoemulsification cataract surgery in diabetes patients: visual function (VF-14), visual acuity and patient satisfaction. Acta Ophthalmol Scand 2005;83:176-83.
- 634. Pham TQ, Cugati S, Rochtchina E, et al. Age-related maculopathy and cataract surgery outcomes: visual acuity and health-related quality of life. Eye 2007;21:324-30.
- 635. Forooghian F, Agron E, Clemons TE, et al. Visual acuity outcomes after cataract surgery in patients with age-related macular degeneration: Age-Related Eye Disease Study report no. 27. Ophthalmology 2009;116:2093-100.
- 636. Age-Related Eye Disease Study 2 Research Group, Huynh N, Nicholson BP, Agrón, E, et al. Visual acuity after cataract surgery in patients with age-related macular degeneration: Age-Related Eye Disease Study 2 report number 5. Ophthalmology 2014;121:1229-36.
- 637. Fong CS, Mitchell P, Rochtchina E, et al. Visual outcomes 12 months after phacoemulsification cataract surgery in patients with diabetes. Acta Ophthalmol 2012;90:173-8.

- 638. Charalampidou S, Loughman J, Nolan J, et al. Prognostic indicators and outcome measures for surgical removal of symptomatic nonadvanced cataract. Arch Ophthalmol 2011;129:1155-61.
- 639. Powe NR, Schein OD, Gieser SC, et al, Cataract Patient Outcome Research Team. Synthesis of the literature on visual acuity and complications following cataract extraction with intraocular lens implantation. Arch Ophthalmol 1994;112:239-52.
- 640. Greenberg PB, Tseng VL, Wu WC, et al. Prevalence and predictors of ocular complications associated with cataract surgery in United States veterans. Ophthalmology 2011;118:507-14.
- 641. Stein JD, Grossman DS, Mundy KM, et al. Severe adverse events after cataract surgery among medicare beneficiaries. Ophthalmology 2011;118:1716-23.
- 642. Zaidi FH, Corbett MC, Burton BJ, Bloom PA. Raising the benchmark for the 21st century--the 1000 cataract operations audit and survey: outcomes, consultant-supervised training and sourcing NHS choice. Br J Ophthalmol 2007;91:731-6.
- 643. Syed ZA, Moayedi J, Mohamedi M, et al. Cataract surgery outcomes at a UK independent sector treatment centre. Br J Ophthalmol 2015;99:1460-5.
- 644. Clark A, Morlet N, Ng JQ, et al. Whole population trends in complications of cataract surgery over 22 years in Western Australia. Ophthalmology 2011;118:1055-61.
- 645. Chen CK, Tseng VL, Wu WC, Greenberg PB. A survey of the current role of manual extracapsular cataract extraction. J Cataract Refract Surg 2010;36:692-3.
- 646. Ernest P, Rhem M, McDermott M, et al. Phacoemulsification conditions resulting in thermal wound injury. J Cataract Refract Surg 2001;27:1829-39.
- 647. Sorensen T, Chan CC, Bradley M, et al. Ultrasound-induced corneal incision contracture survey in the United States and Canada. J Cataract Refract Surg 2012;38:227-33.
- 648. Floyd M, Valentine J, Coombs J, Olson RJ. Effect of incisional friction and ophthalmic viscosurgical devices on the heat generation of ultrasound during cataract surgery. J Cataract Refract Surg 2006;32:1222-6.
- 649. Chang SW, Su TY, Chen YL. Influence of ocular features and incision width on surgically induced astigmatism after cataract surgery. J Refract Surg 2015;31:82-8.
- 650. Cho YK, Kim MS. Perioperative modulating factors on astigmatism in sutured cataract surgery. Korean J Ophthalmol 2009;23:240-8.
- 651. Vollman DE, Gonzalez-Gonzalez LA, Chomsky A, et al. Intraoperative floppy iris and prevalence of intraoperative complications: results from ophthalmic surgery outcomes database. Am J Ophthalmol 2014;157:1130-5.
- 652. Haridas A, Syrimi M, Al-Ahmar B, Hingorani M. Intraoperative floppy iris syndrome (IFIS) in patients receiving tamsulosin or doxazosin-a UK-based comparison of incidence and complication rates. Graefes Arch Clin Exp Ophthalmol 2013;251:1541-5.
- 653. Marcon AS, Rapuano CJ, Jones MR, et al. Descemet's membrane detachment after cataract surgery: management and outcome. Ophthalmology 2002;109:2325-30.
- 654. Al-Mezaine HS. Descemet's membrane detachment after cataract extraction surgery. Int Ophthalmol 2010;30:391-6.
- 655. Hui JI, Fishler J, Karp CL, et al. Retained nuclear fragments in the anterior chamber after phacoemulsification with an intact posterior capsule. Ophthalmology 2006;113:1949-53.
- 656. Van Gelder RN, Leveque TK. Cataract surgery in the setting of uveitis. Curr Opin Ophthalmol 2009;20:42-5.
- 657. Clark WL, Kaiser PK, Flynn HW Jr, et al. Treatment strategies and visual acuity outcomes in chronic postoperative Propionibacterium acnes endophthalmitis. Ophthalmology 1999;106:1665-70.
- 658. Patel C, Kim SJ, Chomsky A, Saboori M. Incidence and risk factors for chronic uveitis following cataract surgery. Ocul Immunol Inflamm 2013;21:130-4.
- 659. Coleman AL. How Big Data informs us about cataract surgery: the LXXII Edward Jackson Memorial Lecture. Am J Ophthalmol 2015;160:1091-103.
- 660. Cao X, Liu A, Zhang J, et al. Clinical analysis of endophthalmitis after phacoemulsification. Can J Ophthalmol 2007;42:844-8.
- 661. Carrim ZI, Richardson J, Wykes WN. Incidence and visual outcome of acute endophthalmitis after cataract surgery--the experience of an eye department in Scotland. Br J Ophthalmol 2009;93:721-5.
- 662. Montan P, Lundstrom M, Stenevi U, Thorburn W. Endophthalmitis following cataract surgery in Sweden. The 1998 national prospective survey. Acta Ophthalmol Scand 2002;80:258-61.
- 663. Fang YT, Chien LN, Ng YY, et al. Association of hospital and surgeon operation volume with the incidence of postoperative endophthalmitis: Taiwan experience. Eye (Lond) 2006;20:900-7.
- 664. Lalitha P, Rajagopalan J, Prakash K, et al. Postcataract endophthalmitis in South India incidence and outcome. Ophthalmology 2005;112:1884-9.

- 665. Garcia-Arumi J, Fonollosa A, Sararols L, et al. Topical anesthesia: possible risk factor for endophthalmitis after cataract extraction. J Cataract Refract Surg 2007;33:989-92.
- 666. Lundstrom M. Endophthalmitis and incision construction. Curr Opin Ophthalmol 2006;17:68-71.
- 667. Monica ML, Long DA. Nine-year safety with self-sealing corneal tunnel incision in clear cornea cataract surgery. Ophthalmology 2005;112:985-6.
- 668. Barry P, Seal DV, Gettinby G, et al. ESCRS study of prophylaxis of postoperative endophthalmitis after cataract surgery: preliminary report of principal results from a European multicenter study. J Cataract Refract Surg 2006;32:407-10.
- 669. Barry P, Gardner S, Seal D, et al. Clinical observations associated with proven and unproven cases in the ESCRS study of prophylaxis of postoperative endophthalmitis after cataract surgery. J Cataract Refract Surg 2009;35:1523-31.
- 670. Behndig A, Cochener B, Guell JL, et al. Endophthalmitis prophylaxis in cataract surgery: overview of current practice patterns in 9 European countries. J Cataract Refract Surg 2013;39:1421-31.
- 671. Gower EW, Lindsley K, Nanji AA, et al. Perioperative antibiotics for prevention of acute endophthalmitis after cataract surgery. Cochrane Database Syst Rev 2013, Issue 7. Art. No.: CD006364. DOI: 10.1002/14651858.CD006364.pub2.
- 672. Barry P. Adoption of intracameral antibiotic prophylaxis of endophthalmitis following cataract surgery: update on the ESCRS Endophthalmitis Study. J Cataract Refract Surg 2014;40:138-42.
- 673. O'Brien TP, Arshinoff SA, Mah FS. Perspectives on antibiotics for postoperative endophthalmitis prophylaxis: potential role of moxifloxacin. J Cataract Refract Surg 2007;33:1790-800.
- 674. Galvis V, Tello A, Sanchez MA, Camacho PA. Cohort study of intracameral moxifloxacin in postoperative endophthalmitis prophylaxis. Ophthalmol Eye Dis 2014;6:1-4.
- 675. Vedantham V, Lalitha P, Velpandian T, et al. Vitreous and aqueous penetration of orally administered moxifloxacin in humans. Eye (Lond) 2006;20:1273-8.
- 676. Sharma T, Kamath MM, Kamath MG, et al. Aqueous penetration of orally and topically administered moxifloxacin. Br J Ophthalmol 2015;99:1182-5.
- 677. Han DC, Chee SP. Survey of practice preference pattern in antibiotic prophylaxis against endophthalmitis after cataract surgery in Singapore. Int Ophthalmol 2012;32:127-34.
- 678. Braga-Mele R, Chang DF, Henderson BA, et al, ASCRS Clinical Cataract Committee. Intracameral antibiotics: safety, efficacy, and preparation. J Cataract Refract Surg 2014;40:2134-42.
- 679. Lemley CA, Han DP. Endophthalmitis: a review of current evaluation and management. Retina 2007;27:662-80.
- 680. Kernt M, Kampik A. Endophthalmitis: pathogenesis, clinical presentation, management, and perspectives. Clin Ophthalmol 2010;4:121-35.
- 681. Endophthalmitis Vitrectomy Study Group. Results of the Endophthalmitis Vitrectomy Study: a randomized trial of immediate vitrectomy and of intravenous antibiotics for the treatment of postoperative bacterial endophthalmitis. Arch Ophthalmol 1995;113:1479-96.
- 682. Montan PG, Koranyi G, Setterquist HE, et al. Endophthalmitis after cataract surgery: risk factors relating to technique and events of the operation and patient history: a retrospective case-control study. Ophthalmology 1998;105:2171-7.
- 683. Somani S, Grinbaum A, Slomovic AR. Postoperative endophthalmitis: incidence, predisposing surgery, clinical course and outcome. Can J Ophthalmol 1997;32:303-10.
- 684. Lalwani GA, Flynn HW Jr, Scott IU, et al. Acute-onset endophthalmitis after clear corneal cataract surgery (1996-2005). Clinical features, causative organisms, and visual acuity outcomes. Ophthalmology 2008;115:473-6.
- 685. Ang GS, Whyte IF. Effect and outcomes of posterior capsule rupture in a district general hospital setting. J Cataract Refract Surg 2006;32:623-7.
- 686. Chan FM, Mathur R, Ku JJ, et al. Rates of posterior capsule rupture during cataract surgery among different races in Singapore. Ann Acad Med Singapore 2006;35:698-700.
- 687. Szijarto Z, Haszonits B, Biro Z, Kovacs B. Phacoemulsification on previously vitrectomized eyes: results of a 10-year-period. Eur J Ophthalmol 2007;17:601-4.
- 688. Narendran N, Jaycock P, Johnston RL, et al. The Cataract National Dataset electronic multicentre audit of 55,567 operations: risk stratification for posterior capsule rupture and vitreous loss. Eye (Lond) 2009;23:31-7.
- 689. Artzen D, Lundstrom M, Behndig A, et al. Capsule complication during cataract surgery: case-control study of preoperative and intraoperative risk factors: Swedish Capsule Rupture Study Group report 2. J Cataract Refract Surg 2009;35:1688-93.
- 690. Jacobs PM. Vitreous loss during cataract surgery: prevention and optimal management. Eye (Lond) 2008;22:1286-9. Erratum in: Eye 2008;22:1370.

- 691. Burk SE, Da Mata AP, Snyder ME, et al. Visualizing vitreous using Kenalog suspension. J Cataract Refract Surg 2003;29:645-51.
- 692. Ho LY, Doft BH, Wang L, Bunker CH. Clinical predictors and outcomes of pars plana vitrectomy for retained lens material after cataract extraction. Am J Ophthalmol 2009;147:587-94.
- 693. von Lany H, Mahmood S, James CR, et al. Displacement of nuclear fragments into the vitreous complicating phacoemulsification surgery in the UK: clinical features, outcomes and management. Br J Ophthalmol 2008;92:493-5.
- 694. Zavodni ZJ, Meyer JJ, Kim T. Clinical features and outcomes of retained lens fragments in the anterior chamber after phacoemulsification. Am J Ophthalmol 2015;160:1171-5.
- 695. Schaal S, Barr CC. Management of retained lens fragments after cataract surgery with and without pars plana vitrectomy. J Cataract Refract Surg 2009;35:863-7.
- 696. Chen CL, Wang TY, Cheng JH, et al. Immediate pars plana vitrectomy improves outcome in retained intravitreal lens fragments after phacoemulsification. Ophthalmologica 2008;222:277-83.
- 697. Treumer F, Bunse A, Rudolf M, Roider J. Pars plana vitrectomy, phacoemulsification and intraocular lens implantation. Comparison of clinical complications in a combined versus two-step surgical approach. Graefes Arch Clin Exp Ophthalmol 2006;244:808-15.
- 698. Alio JL, Ruiz-Moreno JM, Shabayek MH, et al. The risk of retinal detachment in high myopia after small incision coaxial phacoemulsification. Am J Ophthalmol 2007;144:93-8.
- 699. Bhagwandien AC, Cheng YY, Wolfs RC, et al. Relationship between retinal detachment and biometry in 4262 cataractous eyes. Ophthalmology 2006;113:643-9.
- 700. Boberg-Ans G, Henning V, Villumsen J, la Cour M. Longterm incidence of rhegmatogenous retinal detachment and survival in a defined population undergoing standardized phacoemulsification surgery. Acta Ophthalmol Scand 2006;84:613-8.
- 701. Jakobsson G, Montan P, Zetterberg M, et al. Capsule complication during cataract surgery: Retinal detachment after cataract surgery with capsule complication: Swedish Capsule Rupture Study Group report 4. J Cataract Refract Surg 2009;35:1699-705.
- 702. Neuhann IM, Neuhann TF, Heimann H, et al. Retinal detachment after phacoemulsification in high myopia: analysis of 2356 cases. J Cataract Refract Surg 2008;34:1644-57.
- Russell M, Gaskin B, Russell D, Polkinghorne PJ. Pseudophakic retinal detachment after phacoemulsification cataract surgery: Ten-year retrospective review. J Cataract Refract Surg 2006;32:442-5.
- 704. Erie JC, Raecker MA, Baratz KH, et al. Risk of retinal detachment after cataract extraction, 1980-2004: a population-based study. Ophthalmology 2006;113:2026-32.
- 705. Olsen G, Olson RJ. Update on a long-term, prospective study of capsulotomy and retinal detachment rates after cataract surgery. J Cataract Refract Surg 2000;26:1017-21.
- 706. Obuchowska I, Mariak Z. Risk factors of massive suprachoroidal hemorrhage during extracapsular cataract extraction surgery. Eur J Ophthalmol 2005;15:712-7.
- 707. Grzybowski A, Ascaso FJ, Kupidura-Majewski K, Packer M. Continuation of anticoagulant and antiplatelet therapy during phacoemulsification cataract surgery. Curr Opin Ophthalmol 2015;26:28-33.
- 708. Benzimra JD, Johnston RL, Jaycock P, et al. The Cataract National Dataset electronic multicentre audit of 55,567 operations: antiplatelet and anticoagulant medications. Eye (Lond) 2009;23:10-6.
- 709. Ling R, Cole M, James C, et al. Suprachoroidal haemorrhage complicating cataract surgery in the UK: epidemiology, clinical features, management, and outcomes. Br J Ophthalmol 2004;88:478-80.
- 710. Chu CJ, Johnston RL, Buscombe C, et al. Risk factors and incidence of macular edema after cataract surgery: a database study of 81984 eyes. Ophthalmology 2016;123:316-23.
- 711. Singal N, Hopkins J. Pseudophakic cystoid macular edema: ketorolac alone vs. ketorolac plus prednisolone. Can J Ophthalmol 2004;39:245-50.
- 712. Wittpenn JR, Silverstein S, Heier J, et al. A randomized, masked comparison of topical ketorolac 0.4% plus steroid vs steroid alone in low-risk cataract surgery patients. Am J Ophthalmol 2008;146:554-60.
- 713. Rho DS. Treatment of acute pseudophakic cystoid macular edema: Diclofenac versus ketorolac. J Cataract Refract Surg 2003;29:2378-84.
- 714. Laurell CG, Zetterstrom C. Effects of dexamethasone, diclofenac, or placebo on the inflammatory response after cataract surgery. Br J Ophthalmol 2002;86:1380-4.
- 715. Missotten L, Richard C, Trinquand C. Topical 0.1% indomethacin solution versus topical 0.1% dexamethasone solution in the prevention of inflammation after cataract surgery. The Study Group. Ophthalmologica 2001;215:43-50.
- 716. Solomon KD, Cheetham JK, DeGryse R, et al. Topical ketorolac tromethamine 0.5% ophthalmic solution in ocular inflammation after cataract surgery. Ophthalmology 2001;108:331-7.

- 717. Miyake K, Masuda K, Shirato S, et al. Comparison of diclofenac and fluorometholone in preventing cystoid macular edema after small incision cataract surgery: a multicentered prospective trial. Jpn J Ophthalmol 2000;44:58-67.
- 718. Herbort CP, Jauch A, Othenin-Girard P, et al. Diclofenac drops to treat inflammation after cataract surgery. Acta Ophthalmol Scand 2000;78:421-4.
- 719. Snyder RW, Siekert RW, Schwiegerling J, et al. Acular as a single agent for use as an antimiotic and anti-inflammatory in cataract surgery. J Cataract Refract Surg 2000;26:1225-7.
- 720. Heier JS, Topping TM, Baumann W, et al. Ketorolac versus prednisolone versus combination therapy in the treatment of acute pseudophakic cystoid macular edema. Ophthalmology 2000;107:2034-8; discussion 2039.
- 721. Wolf EJ, Braunstein A, Shih C, Braunstein RE. Incidence of visually significant pseudophakic macular edema after uneventful phacoemulsification in patients treated with nepafenac. J Cataract Refract Surg 2007;33:1546-9.
- 722. Asano S, Miyake K, Ota I, et al. Reducing angiographic cystoid macular edema and blood-aqueous barrier disruption after small-incision phacoemulsification and foldable intraocular lens implantation: multicenter prospective randomized comparison of topical diclofenac 0.1% and betamethasone 0.1%. J Cataract Refract Surg 2008;34:57-63.
- 723. Almeida DR, Johnson D, Hollands H, et al. Effect of prophylactic nonsteroidal antiinflammatory drugs on cystoid macular edema assessed using optical coherence tomography quantification of total macular volume after cataract surgery. J Cataract Refract Surg 2008;34:64-9.
- 724. Wielders LH, Lambermont VA, Schouten JS, et al. Prevention of cystoid macular edema after cataract surgery in nondiabetic and diabetic patients: a systematic review and meta-Analysis. Am J Ophthalmol 2015;160:968-81.
- 725. Kim SJ, Schoenberger SD, Thorne JE, et al. Topical nonsteroidal anti-inflammatory drugs and cataract surgery: a report by the American Academy of Ophthalmology. Ophthalmology 2015;122:2159-68.
- 726. Sivaprasad S, Bunce C, Patel N. Non-steroidal anti-inflammatory agents for treating cystoid macular oedema following cataract surgery. Cochrane Database Syst Rev 2004, Issue 3. Art. No.: CD004239. DOI: 10.1002/14651858.CD004239.pub2.
- 727. Yilmaz T, Cordero-Coma M, Gallagher MJ. Ketorolac therapy for the prevention of acute pseudophakic cystoid macular edema: a systematic review. Eye (Lond) 2012;26:252-8.
- 728. Rossetti L, Chaudhuri J, Dickersin K. Medical prophylaxis and treatment of cystoid macular edema after cataract surgery. The results of a meta-analysis. Ophthalmology 1998;105:397-405.
- 729. Spitzer MS, Ziemssen F, Yoeruek E, et al. Efficacy of intravitreal bevacizumab in treating postoperative pseudophakic cystoid macular edema. J Cataract Refract Surg 2008;34:70-5.
- 730. Takamura Y, Kubo E, Akagi Y. Analysis of the effect of intravitreal bevacizumab injection on diabetic macular edema after cataract surgery. Ophthalmology 2009;116:1151-7.
- 731. Chae JB, Joe SG, Yang SJ, et al. Effect of combined cataract surgery and ranibizumab injection in postoperative macular edema in nonproliferative diabetic retinopathy. Retina 2014;34:149-56.
- 732. Quintana NE, Allocco AR, Ponce JA, Magurno MG. Non steroidal anti-inflammatory drugs in the prevention of cystoid macular edema after uneventful cataract surgery. Clin Ophthalmol 2014;8:1209-12.
- 733. Guo S, Patel S, Baumrind B, et al. Management of pseudophakic cystoid macular edema. Surv Ophthalmol 2015;60:123-37.
- 734. Udaondo P, Garcia-Pous M, Garcia-Delpech S, et al. Prophylaxis of macular edema with intravitreal ranibizumab in patients with diabetic retinopathy after cataract surgery: a pilot study. J Ophthalmol 2011;2011:159436.
- 735. Moser CL, Martin-Baranera M, Garat M, et al. Corneal edema and intraocular pressure after cataract surgery: randomized comparison of Healon5 and Amvisc Plus. J Cataract Refract Surg 2004;30:2359-65.
- 736. Cekic O, Batman C. Effect of intracameral carbachol on intraocular pressure following clear corneal phacoemulsification. Eye 1999;13 (Pt 2):209-11.
- 737. Abbasoglu E, Tekeli O, Celikdogan A, Gursel E. A topical or oral carbonic anhydrase inhibitor to control ocular hypertension after cataract surgery. Eur J Ophthalmol 2000;10:27-31.
- 738. Cetinkaya A, Akman A, Akova YA. Effect of topical brinzolamide 1% and brimonidine 0.2% on intraocular pressure after phacoemulsification. J Cataract Refract Surg 2004;30:1736-41.
- 739. Dayanir V, Ozcura F, Kir E, et al. Medical control of intraocular pressure after phacoemulsification. J Cataract Refract Surg 2005;31:484-8.
- 740. Ermis SS, Ozturk F, Inan UU. Comparing the effects of travoprost and brinzolamide on intraocular pressure after phacoemulsification. Eye 2005;19:303-7.
- 741. Fry LL. Comparison of the postoperative intraocular pressure with Betagan, Betoptic, Timoptic, Iopidine, Diamox, Pilopine Gel, and Miostat. J Cataract Refract Surg 1992;18:14-9.

- 742. Gupta A, Bansal RK, Grewal SP. Natural course of intraocular pressure after cataract extraction and the effect of intracameral carbachol. J Cataract Refract Surg 1992;18:166-9.
- 743. Hollands RH, Drance SM, House PH, Schulzer M. Control of intraocular pressure after cataract extraction. Can J Ophthalmol 1990;25:128-32.
- 744. Kasetti SR, Desai SP, Sivakumar S, Sunderraj P. Preventing intraocular pressure increase after phacoemulsification and the role of perioperative apraclonidine. J Cataract Refract Surg 2002;28:2177-80.
- 745. Katsimpris JM, Siganos D, Konstas AG, et al. Efficacy of brimonidine 0.2% in controlling acute postoperative intraocular pressure elevation after phacoemulsification. J Cataract Refract Surg 2003;29:2288-94.
- 746. Kim JY, Sohn JH, Youn DH. Effects of intracameral carbachol and acetylcholine on early postoperative intraocular pressure after cataract extraction. Korean J Ophthalmol 1994;8:61-5.
- 747. Lai JS, Chua JK, Leung AT, Lam DS. Latanoprost versus timolol gel to prevent ocular hypertension after phacoemulsification and intraocular lens implantation. J Cataract Refract Surg 2000;26:386-91.
- 748. Lai JS, Chua JK, Loo A, et al. Effect of intracameral acetylcholine on latanoprost in preventing ocular hypertension after phacoemulsification and intraocular lens implantation. J Cataract Refract Surg 2001;27:700-5.
- 749. Lai JS, Loo A, Tham CC, et al. Preoperative latanoprost to prevent ocular hypertension after phacoemulsification and intraocular lens implantation. J Cataract Refract Surg 2001;27:1792-5.
- 750. Rainer G, Menapace R, Findl O, et al. Randomised fellow eye comparison of the effectiveness of dorzolamide and apraclonidine on intraocular pressure following phacoemulsification cataract surgery. Eye 2000;14 Pt 5:757-60.
- 751. Rainer G, Menapace R, Findl O, et al. Effect of topical brimonidine on intraocular pressure after small incision cataract surgery. J Cataract Refract Surg 2001;27:1227-31.
- 752. Solomon KD, Stewart WC, Hunt HH, et al. Intraoperative intracameral carbachol in phacoemulsification and posterior chamber lens implantation. Am J Ophthalmol 1998;125:36-43.
- 753. Wedrich A, Menapace R. Intraocular pressure following small-incision cataract surgery and polyHEMA posterior chamber lens implantation. A comparison between acetylcholine and carbachol. J Cataract Refract Surg 1992;18:500-5.
- 754. Whitehouse G. Brimonidine and postoperative pressure spikes in cataract surgery. Clin Experiment Ophthalmol 2000;28:364-6.
- 755. Kersey JP, Broadway DC. Corticosteroid-induced glaucoma: a review of the literature. Eye (Lond) 2006;20:407-16.
- 756. Chang DF, Tan JJ, Tripodis Y. Risk factors for steroid response among cataract patients. J Cataract Refract Surg 2011;37:675-81.
- 757. Sheppard JD, Toyos MM, Kempen JH, et al. Difluprednate 0.05% versus prednisolone acetate 1% for endogenous anterior uveitis: a phase III, multicenter, randomized study. Invest Ophthalmol Vis Sci 2014;55:2993-3002.
- 758. Jeng KW, Fine HF, Wheatley HM, et al. Incidence of steroid-induced ocular hypertension after vitreoretinal surgery with difluprednate versus prednisolone acetate. Retina 2014;34:1990-6.
- 759. Mamalis N, Brubaker J, Davis D, et al. Complications of foldable intraocular lenses requiring explantation or secondary intervention--2007 survey update. J Cataract Refract Surg 2008;34:1584-91.
- 760. Kamiya K, Hayashi K, Shimizu K, et al. Multifocal intraocular lens explantation: a case series of 50 eyes. Am J Ophthalmol 2014;158:215-20.
- 761. Hayashi K, Hirata A, Hayashi H. Possible predisposing factors for in-the-bag and out-of-the-bag intraocular lens dislocation and outcomes of intraocular lens exchange surgery. Ophthalmology 2007;114:969-75.
- 762. Petersen AM, Bluth LL, Campion M. Delayed posterior dislocation of silicone plate-haptic lenses after neodymium:yag capsulotomy. J Cataract Refract Surg 2000;26:1827-9.
- 763. Agustin AL, Miller KM. Posterior dislocation of a plate-haptic silicone intraocular lens with large fixation holes. J Cataract Refract Surg 2000;26:1428-9.
- 764. Jehan FS, Mamalis N, Crandall AS. Spontaneous late dislocation of intraocular lens within the capsular bag in pseudoexfoliation patients. Ophthalmology 2001;108:1727-31.
- 765. Masket S, Osher RH. Late complications with intraocular lens dislocation after capsulorhexis in pseudoexfoliation syndrome. J Cataract Refract Surg 2002;28:1481-4.
- 766. Davis D, Brubaker J, Espandar L, et al. Late in-the-bag spontaneous intraocular lens dislocation: evaluation of 86 consecutive cases. Ophthalmology 2009;116:664-70.
- 767. Werner L, Zaugg B, Neuhann T, et al. In-the-bag capsular tension ring and intraocular lens subluxation or dislocation: a series of 23 cases. Ophthalmology 2012;119:266-71.

- 768. Lorente R, de Rojas V, Vazquez de Parga P, et al. Management of late spontaneous in-the-bag intraocular lens dislocation: Retrospective analysis of 45 cases. J Cataract Refract Surg 2010;36:1270-82.
- 769. Tester R, Pace NL, Samore M, Olson RJ. Dysphotopsia in phakic and pseudophakic patients: incidence and relation to intraocular lens type(2). J Cataract Refract Surg 2000;26:810-6.
- 770. Schwiegerling J. Recent developments in pseudophakic dysphotopsia. Curr Opin Ophthalmol 2006;17:27-30.
- 771. Davison JA. Positive and negative dysphotopsia in patients with acrylic intraocular lenses. J Cataract Refract Surg 2000;26:1346-55.
- 772. Coroneo MT, Pham T, Kwok LS. Off-axis edge glare in pseudophakic dysphotopsia. J Cataract Refract Surg 2003;29:1969-73.
- 773. Osher RH. Negative dysphotopsia: long-term study and possible explanation for transient symptoms. J Cataract Refract Surg 2008;34:1699-707.
- 774. Mamalis N. Negative dysphotopsia following cataract surgery. J Cataract Refract Surg 2010;36:371-2.
- 775. Masket S. Truncated edge design, dysphotopsia, and inhibition of posterior capsule opacification. J Cataract Refract Surg 2000;26:145-7.
- 776. Trattler WB, Whitsett JC, Simone PA. Negative dysphotopsia after intraocular lens implantation irrespective of design and material. J Cataract Refract Surg 2005;31:841-5.
- 777. Narvaez J, Banning CS, Stulting RD. Negative dysphotopsia associated with implantation of the Z9000 intraocular lens. J Cataract Refract Surg 2005;31:846-7.
- 778. Davison JA. Clinical performance of Alcon SA30AL and SA60AT single-piece acrylic intraocular lenses. J Cataract Refract Surg 2002;28:1112-23.
- 779. Farbowitz MA, Zabriskie NA, Crandall AS, et al. Visual complaints associated with the AcrySof acrylic intraocular lens. J Cataract Refract Surg 2000;26:1339-45.
- Holladay JT, Lang A, Portney V. Analysis of edge glare phenomena in intraocular lens edge designs. J Cataract Refract Surg 1999;25:748-52.
- 781. Masket S, Fram NR. Pseudophakic negative dysphotopsia: Surgical management and new theory of etiology. J Cataract Refract Surg 2011;37:1199-207.
- 782. Nikeghbali A, Ghasemi Falavarjani K. Scleral fixation of dislocated intraocular lenses by haptic externalization through a clear corneal incision. J Ophthalmic Vis Res 2009;4:266-9.
- 783. Werner L, Apple DJ, Escobar-Gomez M, et al. Postoperative deposition of calcium on the surfaces of a hydrogel intraocular lens. Ophthalmology 2000;107:2179-85.
- 784. Werner L, Apple DJ, Kaskaloglu M, Pandey SK. Dense opacification of the optical component of a hydrophilic acrylic intraocular lens: a clinicopathological analysis of 9 explanted lenses. J Cataract Refract Surg 2001;27:1485-92.
- 785. Tehrani M, Mamalis N, Wallin T, et al. Late postoperative opacification of MemoryLens hydrophilic acrylic intraocular lenses: case series and review. J Cataract Refract Surg 2004;30:115-22.
- 786. Neuhann IM, Werner L, Izak AM, et al. Late postoperative opacification of a hydrophilic acrylic (hydrogel) intraocular lens: a clinicopathological analysis of 106 explants. Ophthalmology 2004;111:2094-101.
- 787. Hunter B, Werner L, Memmen JE, Mamalis N. Postoperative localized opacification of the new MemoryLens design: analyses of an explant. J Cataract Refract Surg 2005;31:1836-40.
- 788. Haymore J, Zaidman G, Werner L, et al. Misdiagnosis of hydrophilic acrylic intraocular lens optic opacification: report of 8 cases with the MemoryLens. Ophthalmology 2007;114:1689-95.
- 789. Werner L, Kollarits CR, Mamalis N, Olson RJ. Surface calcification of a 3-piece silicone intraocular lens in a patient with asteroid hyalosis: a clinicopathologic case report. Ophthalmology 2005;112:447-52.
- 790. Wackernagel W, Ettinger K, Weitgasser U, et al. Opacification of a silicone intraocular lens caused by calcium deposits on the optic. J Cataract Refract Surg 2004;30:517-20.
- 791. Zhu XF, Zou HD, Yu YF, et al. Comparison of blue light-filtering IOLs and UV light-filtering IOLs for cataract surgery: a meta-analysis. PLoS One 2012;7:e33013.
- 792. Neuhann IM, Neuhann TF, Rohrbach JM. Intraocular lens calcification after keratoplasty. Cornea 2013;32:e6-10.
- 793. Fellman MA, Werner L, Liu ET, et al. Calcification of a hydrophilic acrylic intraocular lens after Descemet-stripping endothelial keratoplasty: case report and laboratory analyses. J Cataract Refract Surg 2013;39:799-803.
- 794. MacLean KD, Apel A, Wilson J, Werner L. Calcification of hydrophilic acrylic intraocular lenses associated with intracameral air injection following DMEK. J Cataract Refract Surg 2015;41:1310-4.
- 795. Apple DJ, Isaacs RT, Kent DG, et al. Silicone oil adhesion to intraocular lenses: an experimental study comparing various biomaterials. J Cataract Refract Surg 1997;23:536-44.

- 796. Oner FH, Saatci OA, Sarioglu S, et al. Interaction of intraocular lenses with various concentrations of silicone oil: an experimental study. Ophthalmologica 2003;217:124-8.
- 797. Cazal J, Lavin-Dapena C, Marin J, Verges C. Accommodative intraocular lens tilting. Am J Ophthalmol 2005;140:341-4.
- 798. Yuen L, Trattler W, Boxer Wachler BS. Two cases of Z syndrome with the Crystalens after uneventful cataract surgery. J Cataract Refract Surg 2008;34:1986-9.
- 799. Kramer GD, Werner L, Neuhann T, et al. Anterior haptic flexing and in-the-bag subluxation of an accommodating intraocular lens due to excessive capsular bag contraction. J Cataract Refract Surg 2015;41:2010-3.
- 800. Chang DF. Early rotational stability of the longer Staar toric intraocular lens: fifty consecutive cases. J Cataract Refract Surg 2003;29:935-40.
- Jampaulo M, Olson MD, Miller KM. Long-term Staar toric intraocular lens rotational stability. Am J Ophthalmol 2008;146:550-3.
- 802. Holland E, Lane S, Horn JD, et al. The AcrySof Toric intraocular lens in subjects with cataracts and corneal astigmatism: a randomized, subject-masked, parallel-group, 1-year study. Ophthalmology 2010;117:2104-11.
- 803. Zhu X, He W, Zhang K, Lu Y. Factors influencing 1-year rotational stability of AcrySof Toric intraocular lenses. Br J Ophthalmol 2016;100:263-8.
- 804. Lockwood JC, Randleman JB. Toric intraocular lens rotation to optimize refractive outcome despite appropriate intraoperative positioning. J Cataract Refract Surg 2015;41:878-83.
- 805. Willerscheidt AB, Healey ML, Ireland M. Cataract surgery outcomes: importance of co-morbidities in case mix. J Cataract Refract Surg 1995;21:177-81.
- 806. Lundstrom M, Barry P, Henry Y, et al. Visual outcome of cataract surgery; study from the European Registry of Quality Outcomes for Cataract and Refractive Surgery. J Cataract Refract Surg 2013;39:673-9.
- 807. Tielsch JM, Steinberg EP, Cassard SD, et al. Preoperative functional expectations and postoperative outcomes among patients undergoing first eye cataract surgery. Arch Ophthalmol 1995;113:1312-8.
- 808. Grimfors M, Mollazadegan K, Lundstrom M, Kugelberg M. Ocular comorbidity and self-assessed visual function after cataract surgery. J Cataract Refract Surg 2014;40:1163-9.
- 809. Day AC, Donachie PH, Sparrow JM, Johnston RL. The Royal College of Ophthalmologists' National Ophthalmology Database study of cataract surgery: report 1, visual outcomes and complications. Eye (Lond) 2015;29:552-60.
- 810. Klein R, Klein BE, Jensen SC, Cruickshanks KJ. The relationship of ocular factors to the incidence and progression of age-related maculopathy. Arch Ophthalmol 1998;116:506-13.
- 811. Wang JJ, Klein R, Smith W, et al. Cataract surgery and the 5-year incidence of late-stage age-related maculopathy: pooled findings from the Beaver Dam and Blue Mountains Eye Studies. Ophthalmology 2003;110:1960-7.
- Freeman EE, Munoz B, West SK, et al. Is there an association between cataract surgery and agerelated macular degeneration? Data from three population-based studies. Am J Ophthalmol 2003;135:849-56.
- Chew EY, Benson WE, Remaley NA, et al. Results after lens extraction in patients with diabetic retinopathy: Early Treatment Diabetic Retinopathy Study report number 25. Arch Ophthalmol 1999;117:1600-6.
- 814. Henricsson M, Heijl A, Janzon L. Diabetic retinopathy before and after cataract surgery. Br J Ophthalmol 1996;80:789-93.
- 815. Hayashi K, Hayashi H. Pupil size before and after phacoemulsification in nondiabetic and diabetic patients. J Cataract Refract Surg 2004;30:2543-50.
- 816. Mittra RA, Borrillo JL, Dev S, et al. Retinopathy progression and visual outcomes after phacoemulsification in patients with diabetes mellitus. Arch Ophthalmol 2000;118:912-7.
- 817. Squirrell D, Bhola R, Bush J, et al. A prospective, case controlled study of the natural history of diabetic retinopathy and maculopathy after uncomplicated phacoemulsification cataract surgery in patients with type 2 diabetes. Br J Ophthalmol 2002;86:565-71.
- 818. Henderson BA, Kim JY, Ament CS, et al. Clinical pseudophakic cystoid macular edema. Risk factors for development and duration after treatment. J Cataract Refract Surg 2007;33:1550-8.
- 819. Traish AS, Colby KA. Approaching cataract surgery in patients with fuchs' endothelial dystrophy. Int Ophthalmol Clin 2010;50:1-11.
- 820. Tong JT, Miller KM. Intraocular pressure change after sutureless phacoemulsification and foldable posterior chamber lens implantation. J Cataract Refract Surg 1998;24:256-62.

- 821. Jahn CE. Reduced intraocular pressure after phacoemulsification and posterior chamber intraocular lens implantation. J Cataract Refract Surg 1997;23:1260-4.
- 822. Shingleton BJ, Gamell LS, O'Donoghue MW, et al. Long-term changes in intraocular pressure after clear corneal phacoemulsification: normal patients versus glaucoma suspect and glaucoma patients. J Cataract Refract Surg 1999;25:885-90.
- 823. Kim DD, Doyle JW, Smith MF. Intraocular pressure reduction following phacoemulsification cataract extraction with posterior chamber lens implantation in glaucoma patients. Ophthalmic Surg Lasers 1999;30:37-40.
- 824. Tennen DG, Masket S. Short-and long-term effect of clear corneal incisions on intraocular pressure. J Cataract Refract Surg 1996;22:568-70.
- 825. Barak A, Desatnik H, Ma-Naim T, et al. Early postoperative intraocular pressure pattern in glaucomatous and nonglaucomatous patients. J Cataract Refract Surg 1996;22:607-11.
- 826. Kuchle M, Viestenz A, Martus P, et al. Anterior chamber depth and complications during cataract surgery in eyes with pseudoexfoliation syndrome. Am J Ophthalmol 2000;129:281-5.
- 827. Drolsum L, Haaskjold E, Sandvig K. Phacoemulsification in eyes with pseudoexfoliation. J Cataract Refract Surg 1998;24:787-92.
- 828. Hayashi H, Hayashi K, Nakao F, Hayashi F. Anterior capsule contraction and intraocular lens dislocation in eyes with pseudoexfoliation syndrome. Br J Ophthalmol 1998;82:1429-32.
- 829. Scorolli L, Scorolli L, Campos EC, et al. Pseudoexfoliation syndrome: a cohort study on intraoperative complications in cataract surgery. Ophthalmologica 1998;212:278-80.
- 830. Shingleton BJ, Crandall AS, Ahmed II. Pseudoexfoliation and the cataract surgeon: preoperative, intraoperative, and postoperative issues related to intraocular pressure, cataract, and intraocular lenses. J Cataract Refract Surg 2009;35:1101-20.
- 831. Hyams M, Mathalone N, Herskovitz M, et al. Intraoperative complications of phacoemulsification in eyes with and without pseudoexfoliation. J Cataract Refract Surg 2005;31:1002-5.
- 832. Shingleton BJ, Marvin AC, Heier JS, et al. Pseudoexfoliation: high risk factors for zonule weakness and concurrent vitrectomy during phacoemulsification. J Cataract Refract Surg 2010;36:1261-9.
- 833. Krolicki TJ, Tasman W. Cataract extraction in adults with retinopathy of prematurity. Arch Ophthalmol 1995;113:173-7.
- 834. Lai YK, Fan RF. Effect of heparin-surface-modified poly(methyl methacrylate) intraocular lenses on the postoperative inflammation in an Asian population. J Cataract Refract Surg 1996;22 Suppl 1:830-4.
- 835. Holland GN, Van Horn SD, Margolis TP. Cataract surgery with ciliary sulcus fixation of intraocular lenses in patients with uveitis. Am J Ophthalmol 1999;128:21-30.
- 836. Okhravi N, Lightman SL, Towler HM. Assessment of visual outcome after cataract surgery in patients with uveitis. Ophthalmology 1999;106:710-22.
- 837. Tabbara KF, Al-Kaff AS, Al-Rajhi AA, et al. Heparin surface-modified intraocular lenses in patients with inactive uveitis or diabetes. Ophthalmology 1998;105:843-5.
- 838. Mehta S, Linton MM, Kempen JH. Outcomes of cataract surgery in patients with uveitis: a systematic review and meta-analysis. Am J Ophthalmol 2014;158:676-92.
- Leung TG, Lindsley K, Kuo IC. Types of intraocular lenses for cataract surgery in eyes with uveitis. Cochrane Database Syst Rev 2014, Issue 3. Art. No.: CD007284. DOI: 10.1002/14651858.CD007284.pub2.
- 840. Chew EY, Sperduto RD, Milton RC, et al. Risk of advanced age-related macular degeneration after cataract surgery in the Age-Related Eye Disease Study: AREDS report number 25. Ophthalmology 2009;116:297-303.
- 841. Dong LM, Stark WJ, Jefferys JL, et al. Progression of age-related macular degeneration after cataract surgery. Arch Ophthalmol 2009;127:1412-9.
- Casparis H, Lindsley K, Kuo IC, et al. Surgery for cataracts in people with age-related macular degeneration. Cochrane Database Syst Rev 2012, Issue 6. Art. No.: CD006757. DOI: 10.1002/14651858.CD006757.pub3.
- 843. Saraf SS, Ryu CL, Ober MD. The effects of cataract surgery on patients with wet macular degeneration. Am J Ophthalmol 2015;160:487-92.
- 844. Akinci A, Batman C, Ozkilic E, Altinsoy A. Phacoemulsification with intravitreal bevacizumab injection in diabetic patients with macular edema and cataract. Retina 2009;29:1432-5.
- 845. Lanzagorta-Aresti A, Palacios-Pozo E, Menezo Rozalen JL, Navea-Tejerina A. Prevention of vision loss after cataract surgery in diabetic macular edema with intravitreal bevacizumab: a pilot study. Retina 2009;29:530-5.

- 846. Cheema RA, Al-Mubarak MM, Amin YM, Cheema MA. Role of combined cataract surgery and intravitreal bevacizumab injection in preventing progression of diabetic retinopathy: prospective randomized study. J Cataract Refract Surg 2009;35:18-25.
- 847. Lam DS, Chan CK, Mohamed S, et al. Phacoemulsification with intravitreal triamcinolone in patients with cataract and coexisting diabetic macular oedema: a 6-month prospective pilot study. Eye (Lond) 2005;19:885-90.
- 848. Cetin EN, Yildirim C. Adjuvant treatment modalities to control macular edema in diabetic patients undergoing cataract surgery. Int Ophthalmol 2013;33:605-10.
- 849. Salehi A, Beni AN, Razmjoo H, Beni ZN. Phacoemulcification with intravitreal bevacizumab injection in patients with cataract and coexisting diabetic retinopathy: prospective randomized study. J Ocul Pharmacol Ther 2012;28:212-8.
- 850. Haddad NM, Sun JK, Abujaber S, et al. Cataract surgery and its complications in diabetic patients. Semin Ophthalmol 2014;29:329-37.
- 851. Ostri C, Lund-Andersen H, Sander B, La Cour M. Phacoemulsification cataract surgery in a large cohort of diabetes patients: visual acuity outcomes and prognostic factors. J Cataract Refract Surg 2011;37:2006-12.
- 852. Seitzman GD, Gottsch JD, Stark WJ. Cataract surgery in patients with Fuchs' corneal dystrophy: expanding recommendations for cataract surgery without simultaneous keratoplasty. Ophthalmology 2005;112:441-6.
- 853. Terry MA, Shamie N, Chen ES, et al. Endothelial keratoplasty for Fuchs' dystrophy with cataract: complications and clinical results with the new triple procedure. Ophthalmology 2009;116:631-9.
- 854. Chang ST, Yamagata AS, Afshari NA. Pearls for successful cataract surgery with endothelial keratoplasty. Curr Opin Ophthalmol 2014;25:335-9.
- 855. Liu E, Cole S, Werner L, et al. Pathologic evidence of pseudoexfoliation in cases of in-the-bag intraocular lens subluxation or dislocation. J Cataract Refract Surg 2015;41:929-35.
- 856. American Academy of Ophthalmology, American Uveitis Society. Preferred Practice Pattern® Clinical Questions. Uveitis and Cataract Surgery. San Francisco, CA: American Academy of Ophthalmology; 2013. Available at: <u>www.aao.org/clinical-questions/uveitis-cataract-surgery</u>. Accessed May 27, 2016.
- 857. American Academy of Ophthalmology, American Uveitis Society. Preferred Practice Pattern® Clinical Questions. Preoperative Control of Uveitis. San Francisco, CA: American Academy of Ophthalmology; 2013. Available at: <u>www.aao.org/clinical-questions/preoperative-control-of-uveitis-2</u>. Accessed May 27, 2016.
- 858. Jancevski M, Foster CS. Cataracts and uveitis. Curr Opin Ophthalmol 2010;21:10-4.
- 859. Bélair ML, Kim SJ, Thorne JE, et al. Incidence of cystoid macular edema after cataract surgery in patients with and without uveitis using optical coherence tomography. Am J Ophthalmol 2009;148:128-35.
- 860. Dada T, Dhawan M, Garg S, et al. Safety and efficacy of intraoperative intravitreal injection of triamcinolone acetonide injection after phacoemulsification in cases of uveitic cataract. J Cataract Refract Surg 2007;33:1613-8.
- 861. Vasavada A, Singh R. Step-by-step chop in situ and separation of very dense cataracts. J Cataract Refract Surg 1998;24:156-9.
- 862. Kimura H, Kuroda S, Mizoguchi N, et al. Extracapsular cataract extraction with a sutureless incision for dense cataracts. J Cataract Refract Surg 1999;25:1275-9.
- 863. Inatomi M, Ishii K, Koide R, et al. Intraocular lens power calculation for microphthalmos. J Cataract Refract Surg 1997;23:1208-12.
- 864. Day AC, MacLaren RE, Bunce C, et al. Outcomes of phacoemulsification and intraocular lens implantation in microphthalmos and nanophthalmos. J Cataract Refract Surg 2013;39:87-96.
- 865. Carifi G, Safa F, Aiello F, et al. Cataract surgery in small adult eyes. Br J Ophthalmol 2014;98:1261-5.
- 866. Fan DS, Lam DS, Li KK. Retinal complications after cataract extraction in patients with high myopia. Ophthalmology 1999;106:688-91; discussion 691-2.
- 867. Fritch CD. Risk of retinal detachment in myopic eyes after intraocular lens implantation: a 7 year study. J Cataract Refract Surg 1998;24:1357-60.
- 868. Alldredge CD, Elkins B, Alldredge OC Jr. Retinal detachment following phacoemulsification in highly myopic cataract patients. J Cataract Refract Surg 1998;24:777-80.
- 869. Lyle WA, Jin GJ. Phacoemulsification with intraocular lens implantation in high myopia. J Cataract Refract Surg 1996;22:238-42.
- 870. Jeon S, Kim HS. Clinical characteristics and outcomes of cataract surgery in highly myopic Koreans. Korean J Ophthalmol 2011;25:84-9.

- 871. Daien V, Le Pape A, Heve D, et al. Incidence, risk factors, and impact of age on retinal detachment after cataract surgery in France: a national population study. Ophthalmology 2015;122:2179-85.
- 872. Dinsmore SC. Modified stretch technique for small pupil phacoemulsification with topical anesthesia. J Cataract Refract Surg 1996;22:27-30.
- 873. Vasavada A, Singh R. Phacoemulsification in eyes with posterior polar cataract. J Cataract Refract Surg 1999;25:238-45.
- 874. Consultation section. Cataract surgical problem. J Cataract Refract Surg 1997;23:819-24.
- 875. Arthur SN, Peng Q, Apple DJ, et al. Effect of heparin surface modification in reducing silicone oil adherence to various intraocular lenses. J Cataract Refract Surg 2001;27:1662-9.
- 876. Hahn P, Yashkin AP, Sloan FA. Effect of prior anti-VEGF injections on the risk of retained lens fragments and endophthalmitis after cataract surgery in the elderly. Ophthalmology 2016;123:309-15.
- 877. Manoj B, Chako D, Khan MY. Effect of extracapsular cataract extraction and phacoemulsification performed after trabeculectomy on intraocular pressure. J Cataract Refract Surg 2000;26:75-8.
- Chen PP, Weaver YK, Budenz DL, et al. Trabeculectomy function after cataract extraction. Ophthalmology 1998;105:1928-35.
- 879. Caprioli J, Park HJ, Kwon YH, Weitzman M. Temporal corneal phacoemulsification in filtered glaucoma patients. Trans Am Ophthalmol Soc 1997;95:153-67; discussion 167-70.
- 880. Law SK, Riddle J. Management of cataracts in patients with glaucoma. Int Ophthalmol Clin 2011;51:1-18.
- 881. Seitz B, Langenbucher A, Nguyen NX, et al. Underestimation of intraocular lens power for cataract surgery after myopic photorefractive keratectomy. Ophthalmology 1999;106:693-702.
- 882. Lyle WA, Jin GJ. Intraocular lens power prediction in patients who undergo cataract surgery following previous radial keratotomy. Arch Ophthalmol 1997;115:457-61.
- 883. Hoffer KJ. Intraocular lens power calculation for eyes after refractive keratotomy. J Refract Surg 1995;11:490-3.
- 884. Grusha YO, Masket S, Miller KM. Phacoemulsification and lens implantation after pars plana vitrectomy. Ophthalmology 1998;105:287-94.
- 885. Pinter SM, Sugar A. Phacoemulsification in eyes with past pars plana vitrectomy: case-control study. J Cataract Refract Surg 1999;25:556-61.
- 886. McDermott ML, Puklin JE, Abrams GW, Eliott D. Phacoemulsification for cataract following pars plana vitrectomy. Ophthalmic Surg Lasers 1997;28:558-64.
- 887. Ohguro N, Matsuda M, Kinoshita S. Effects of posterior chamber lens implantation on the endothelium of transplanted corneas. Br J Ophthalmol 1997;81:1056-9.
- 888. Tsui JY, Goins KM, Sutphin JE, Wagoner MD. Phakic descemet stripping automated endothelial keratoplasty: prevalence and prognostic impact of postoperative cataracts. Cornea 2011;30:291-5.
- 889. Rao SK, Leung CK, Cheung CY, et al. Descemet stripping endothelial keratoplasty: effect of the surgical procedure on corneal optics. Am J Ophthalmol 2008;145:991-6.
- 890. Eshete A, Bergwerk KL, Masket S, Miller KM. Phacoemulsification and lens implantation after scleral buckling surgery. Am J Ophthalmol 2000;129:286-90.
- 891. Kerrison JB, Marsh M, Stark WJ, Haller JA. Phacoemulsification after retinal detachment surgery. Ophthalmology 1996;103:216-9.
- 892. Nihalani BR, Jani UD, Vasavada AR, Auffarth GU. Cataract surgery in relative anterior microphthalmos. Ophthalmology 2005;112:1360-7.
- 893. Jung KI, Yang JW, Lee YC, Kim SY. Cataract surgery in eyes with nanophthalmos and relative anterior microphthalmos. Am J Ophthalmol 2012;153:1161-8.
- 894. Chang DF, Campbell JR. Intraoperative floppy iris syndrome associated with tamsulosin. J Cataract Refract Surg 2005;31:664-73.
- 895. Parssinen O, Leppanen E, Keski-Rahkonen P, et al. Influence of tamsulosin on the iris and its implications for cataract surgery. Invest Ophthalmol Vis Sci 2006;47:3766-71.
- 896. Vajpayee RB, Bansal A, Sharma N, et al. Phacoemulsification of white hypermature cataract. J Cataract Refract Surg 1999;25:1157-60.
- 897. Horiguchi M, Miyake K, Ohta I, Ito Y. Staining of the lens capsule for circular continuous capsulorrhexis in eyes with white cataract. Arch Ophthalmol 1998;116:535-7.
- 898. Vasavada A, Singh R. Surgical techniques for difficult cataracts. Curr Opin Ophthalmol 1999;10:46-52.
- 899. Vasavada A, Singh R, Desai J. Phacoemulsification of white mature cataracts. J Cataract Refract Surg 1998;24:270-7.
- 900. Jacobs DS, Cox TA, Wagoner MD, et al. Capsule staining as an adjunct to cataract surgery: a report from the American Academy of Ophthalmology. Ophthalmology 2006;113:707-13.

- 901. Gimbel HV, Sun R, Heston JP. Management of zonular dialysis in phacoemulsification and IOL implantation using the capsular tension ring. Ophthalmic Surg Lasers 1997;28:273-81.
- 902. Cionni RJ, Osher RH. Management of profound zonular dialysis or weakness with a new endocapsular ring designed for scleral fixation. J Cataract Refract Surg 1998;24:1299-306.
- 903. Goldman JM, Karp CL. Adjunct devices for managing challenging cases in cataract surgery: capsular staining and ophthalmic viscosurgical devices. Curr Opin Ophthalmol 2007;18:52-7.
- 904. Bayraktar S, Altan T, Kucuksumer Y, Yilmaz OF. Capsular tension ring implantation after capsulorhexis in phacoemulsification of cataracts associated with pseudoexfoliation syndrome. Intraoperative complications and early postoperative findings. J Cataract Refract Surg 2001;27:1620-8.
- 905. Lee DH, Shin SC, Joo CK. Effect of a capsular tension ring on intraocular lens decentration and tilting after cataract surgery. J Cataract Refract Surg 2002;28:843-6.
- 906. Hasanee K, Ahmed II. Capsular tension rings: update on endocapsular support devices. Ophthalmol Clin North Am 2006;19:507-19.
- 907. Grob SR, Gonzalez-Gonzalez LA, Daly MK. Management of mydriasis and pain in cataract and intraocular lens surgery: review of current medications and future directions. Clin Ophthalmol 2014;8:1281-9.
- 908. Hashemi H, Seyedian MA, Mohammadpour M. Small pupil and cataract surgery. Curr Opin Ophthalmol 2015;26:3-9.
- 909. Chang DF, Braga-Mele R, Mamalis N, et al, ASCRS Cataract Clinical Committee. ASCRS White Paper: clinical review of intraoperative floppy-iris syndrome. J Cataract Refract Surg 2008;34:2153-62.
- 910. Chang DF, Osher RH, Wang L, Koch DD. Prospective multicenter evaluation of cataract surgery in patients taking tamsulosin (Flomax). Ophthalmology 2007;114:957-64.
- 911. Chang DF, Braga-Mele R, Mamalis N, et al, ASCRS Cataract Clinical Committee. Clinical experience with intraoperative floppy-iris syndrome. Results of the 2008 ASCRS member survey. J Cataract Refract Surg 2008;34:1201-9.
- 912. Bell CM, Hatch WV, Fischer HD, et al. Association between tamsulosin and serious ophthalmic adverse events in older men following cataract surgery. JAMA 2009;301:1991-6.
- 913. Pham TQ, Wang JJ, Rochtchina E, et al. Systemic and ocular comorbidity of cataract surgical patients in a western Sydney public hospital. Clin Experiment Ophthalmol 2004;32:383-7.
- 914. Gallenga PE, Lobefalo L. Postoperative finding in the intraoperative floppy-iris syndrome. J Cataract Refract Surg 2007;33:1811-2.
- 915. American Urological Association. Chapter 1: guideline on the management of benign prostatic hyperplasia (BPH). In: Benign Prostatic Hyperplasia (BPH) Clinical Guideline. Linthicum, MD: American Urological Association, 2010:12. Available at: www.auanet.org/education/guidelines/benign-prostatic-hyperplasia.cfm. Accessed May 27, 2016.
- 916. Blouin MC, Blouin J, Perreault S, et al. Intraoperative floppy-iris syndrome associated with alpha1adrenoreceptors: comparison of tamsulosin and alfuzosin. J Cataract Refract Surg 2007;33:1227-34.
- 917. Chang DF, Campbell JR, Colin J, Schweitzer C. Prospective masked comparison of intraoperative floppy iris syndrome severity with tamsulosin versus alfuzosin. Ophthalmology 2014;121:829-34.
- 918. Chatziralli IP, Sergentanis TN. Risk factors for intraoperative floppy iris syndrome: a meta-analysis. Ophthalmology 2011;118:730-5.
- 919. Jamula E, Anderson J, Douketis JD. Safety of continuing warfarin therapy during cataract surgery: a systematic review and meta-analysis. Thromb Res 2009;124:292-9.
- 920. Katz J, Feldman MA, Bass EB, et al. Risks and benefits of anticoagulant and antiplatelet medication use before cataract surgery. Ophthalmology 2003;110:1784-8.
- 921. Healey JS, Eikelboom J, Douketis J, et al, RE-LY Investigators. Periprocedural bleeding and thromboembolic events with dabigatran compared with warfarin: results from the Randomized Evaluation of Long-Term Anticoagulation Therapy (RE-LY) randomized trial. Circulation 2012;126:343-8.
- 922. Huebert I, Heinicke N, Kook D, et al. Dual platelet inhibition in cases of severe retrobulbar hemorrhage following retrobulbar and peribulbar anesthesia. J Cataract Refract Surg 2015;41:2092-101.
- 923. Kobayashi H. Evaluation of the need to discontinue antiplatelet and anticoagulant medications before cataract surgery. J Cataract Refract Surg 2010;36:1115-9.
- 924. Kumar N, Jivan S, Thomas P, McLure H. Sub-Tenon's anesthesia with aspirin, warfarin, and clopidogrel. J Cataract Refract Surg 2006;32:1022-5.
- 925. Douketis JD, Berger PB, Dunn AS, et al, American College of Chest Physicians. The perioperative management of antithrombotic therapy: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008;133:2998-3398.

- 926. Royal College of Anaesthetists and Royal College of Ophthalmologists. Local Anaesthesia for Ophthalmic Surgery: Joint Guidelines from the Royal College of Anaesthetists and the Royal College of Ophthalmologists. 2012:12. Available at: <u>www.rcoa.ac.uk/node/2272</u>. Accessed February 10, 2016.
- 927. Task Force for Preoperative Cardiac Risk Assessment and Perioperative Cardiac Management in Noncardiac Surgery of the European Society of Cardiology (ESC) and endorsed by the European Society of Anaesthesiology (ESA), Poldermans D, Bax JJ, Boersma E, et al. Guidelines for pre-operative cardiac risk assessment and perioperative cardiac management in non-cardiac surgery. Eur Heart J 2009;30:2769-812.
- 928. Burger W, Chemnitius JM, Kneissl GD, Rucker G. Low-dose aspirin for secondary cardiovascular prevention cardiovascular risks after its perioperative withdrawal versus bleeding risks with its continuation review and meta-analysis. J Intern Med 2005;257:399-414.
- 929. Baron TH, Kamath PS, McBane RD. Management of antithrombotic therapy in patients undergoing invasive procedures. N Engl J Med 2013;368:2113-24.
- 930. Kiire CA, Mukherjee R, Ruparelia N, et al. Managing antiplatelet and anticoagulant drugs in patients undergoing elective ophthalmic surgery. Br J Ophthalmol 2014;98:1320-4.
- 931. Wilson W, Taubert KA, Gewitz M, et al. Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation 2007;116:1736-54.
- 932. American Academy of Orthopaedic Surgeons and American Association of Orthopaedic Surgeons. Clinical Practice Guidelines and Performance Measures. Available at: <u>www.aaos.org/Quality/</u>. Accessed May 27, 2016.
- 933. Budenz DL, Gedde SJ. New options for combined cataract and glaucoma surgery. Curr Opin Ophthalmol 2014;25:141-7.
- 934. Turalba A, Payal AR, Gonzalez-Gonzalez LA, et al. Cataract surgery outcomes in glaucomatous eyes: results from the Veterans Affairs Ophthalmic Surgery Outcomes Data Project. Am J Ophthalmol 2015;160:693-701.
- 935. Friedman DS, Jampel HD, Lubomski LH, et al. Surgical strategies for coexisting glaucoma and cataract: an evidence-based update. Ophthalmology 2002;109:1902-13.
- 936. Hayashi K, Hayashi H, Nakao F, Hayashi F. Effect of cataract surgery on intraocular pressure control in glaucoma patients. J Cataract Refract Surg 2001;27:1779-86.
- 937. Poley BJ, Lindstrom RL, Samuelson TW, Schulze R Jr. Intraocular pressure reduction after phacoemulsification with intraocular lens implantation in glaucomatous and nonglaucomatous eyes: evaluation of a causal relationship between the natural lens and open-angle glaucoma. J Cataract Refract Surg 2009;35:1946-55.
- 938. Zetterström C, Behndig A, Kugelberg M, et al. Changes in intraocular pressure after cataract surgery: Analysis of the Swedish National Cataract Register Data. J Cataract Refract Surg 2015;41:1725-9.
- 939. Chen PP, Lin SC, Junk AK, et al. The effect of phacoemulsification on intraocular pressure in glaucoma patients: a report by the American Academy of Ophthalmology. Ophthalmology 2015;122:1294-307.
- 940. Jampel HD, Friedman DS, Lubomski LH, et al. Effect of technique on intraocular pressure after combined cataract and glaucoma surgery: An evidence-based review. Ophthalmology 2002;109:2215-24.
- 941. Gdih GA, Yuen D, Yan P, et al. Meta-analysis of 1- versus 2-Site Phacotrabeculectomy. Ophthalmology 2011;118:71-6.
- 942. Wyse T, Meyer M, Ruderman JM, et al. Combined trabeculectomy and phacoemulsification: a onesite vs a two-site approach. Am J Ophthalmol 1998;125:334-9.
- 943. Park HJ, Weitzman M, Caprioli J. Temporal corneal phacoemulsification combined with superior trabeculectomy. A retrospective case-control study. Arch Ophthalmol 1997;115:318-23.
- 944. Shingleton B, Tetz M, Korber N. Circumferential viscodilation and tensioning of Schlemm canal (canaloplasty) with temporal clear corneal phacoemulsification cataract surgery for open-angle glaucoma and visually significant cataract: one-year results. J Cataract Refract Surg 2008;34:433-40.
- 945. Francis BA, Minckler D, Dustin L, et al. Combined cataract extraction and trabeculotomy by the internal approach for coexisting cataract and open-angle glaucoma: initial results. J Cataract Refract Surg 2008;34:1096-103.
- 946. Gayton JL, Van Der Karr M, Sanders V. Combined cataract and glaucoma surgery: trabeculectomy versus endoscopic laser cycloablation. J Cataract Refract Surg 1999;25:1214-9.

- 947. Samuelson TW, Katz LJ, Wells JM, et al. Randomized evaluation of the trabecular micro-bypass stent with phacoemulsification in patients with glaucoma and cataract. Ophthalmology 2011;118:459-67.
- 948. Minckler DS, Hill RA. Use of novel devices for control of intraocular pressure. Exp Eye Res 2009;88:792-8.
- 949. Vizzeri G, Weinreb RN. Cataract surgery and glaucoma. Curr Opin Ophthalmol 2010;21:20-4.
- 950. Pfeiffer N, Garcia-Feijoo J, Martinez-de-la-Casa JM, et al. A randomized trial of a Schlemm's canal microstent with phacoemulsification for reducing intraocular pressure in open-angle glaucoma. Ophthalmology 2015;122:1283-93.
- 951. Zhang ML, Hirunyachote P, Jampel H. Combined surgery versus cataract surgery alone for eyes with cataract and glaucoma. Cochrane Database of Sys Rev 2015, Issue 7. Art. No.: CD008671. DOI: 10.1002/14651858.CD008671.pub3.
- 952. Thomas RE, Crichton A, Thomas BC. Antimetabolites in cataract surgery to prevent failure of a previous trabeculectomy. Cochrane Database Syst Rev 2014, Issue 7. Art. No.: CD010627. DOI: 10.1002/14651858.CD010627.pub2.
- 953. Wilkins M, Indar A, Wormald R. Intraoperative mitomycin C for glaucoma surgery. Cochrane Database Syst Rev 2005, Issue 4. Art. No.: CD002897. DOI: 10.1002/14651858.CD002897.pub2.
- 954. Higginbotham EJ, Stevens RK, Musch DC, et al. Bleb-related endophthalmitis after trabeculectomy with mitomycin C. Ophthalmology 1996;103:650-6.
- 955. Greenfield DS, Suner IJ, Miller MP, et al. Endophthalmitis after filtering surgery with mitomycin. Arch Ophthalmol 1996;114:943-9.
- 956. Jampel HD, Quigley HA, Kerrigan-Baumrind LA, et al. Risk factors for late-onset infection following glaucoma filtration surgery. Arch Ophthalmol 2001;119:1001-8.
- 957. Costa VP, Wilson RP, Moster MR, et al. Hypotony maculopathy following the use of topical mitomycin C in glaucoma filtration surgery. Ophthalmic Surg 1993;24:389-94.
- 958. Greenfield DS, Liebmann JM, Jee J, Ritch R. Late-onset bleb leaks after glaucoma filtering surgery. Arch Ophthalmol 1998;116:443-7.
- 959. Greene JB, Mian SI. Cataract surgery in patients with corneal disease. Curr Opin Ophthalmol 2013;24:9-14.
- 960. Beltrame G, Salvetat ML, Driussi G, Chizzolini M. Effect of incision size and site on corneal endothelial changes in cataract surgery. J Cataract Refract Surg 2002;28:118-25.
- 961. Ozkiris A, Arslan O, Cicik E, et al. Open-sky capsulorrhexis in triple procedure: with or without trypan blue? Eur J Ophthalmol 2003;13:764-9.
- 962. Hayashi K, Hayashi H. Simultaneous versus sequential penetrating keratoplasty and cataract surgery. Cornea 2006;25:1020-5.
- 963. Shimmura S, Ohashi Y, Shiroma H, et al. Corneal opacity and cataract: triple procedure versus secondary approach. Cornea 2003;22:234-8.
- 964. Geggel HS. Intraocular lens implantation after penetrating keratoplasty. Improved unaided visual acuity, astigmatism, and safety in patients with combined corneal disease and cataract. Ophthalmology 1990;97:1460-7.
- 965. Matsumoto Y, Dogru M, Shimazaki J, Tsubota K. Novel corneal piggyback technique for consecutive intraocular lens implantation and penetrating keratoplasty surgery. Cornea 2015;34:713-6.
- 966. Terry MA, Ousley PJ. Replacing the endothelium without corneal surface incisions or sutures: the first United States clinical series using the deep lamellar endothelial keratoplasty procedure. Ophthalmology 2003;110:755-64; discussion 764.
- 967. Price FW Jr, Price MO. Descemet's stripping with endothelial keratoplasty in 200 eyes: Early challenges and techniques to enhance donor adherence. J Cataract Refract Surg 2006;32:411-8.
- 968. Musa FU, Cabrerizo J, Quilendrino R, et al. Outcomes of phacoemulsification after Descemet membrane endothelial keratoplasty. J Cataract Refract Surg 2013;39:836-40.
- 969. Scorcia V, Matteoni S, Scorcia GB, et al. Pentacam assessment of posterior lamellar grafts to explain hyperopization after Descemet's stripping automated endothelial keratoplasty. Ophthalmology 2009;116:1651-5.
- 970. Yoo SH, Kymionis GD, Deobhakta AA, et al. One-year results and anterior segment optical coherence tomography findings of descemet stripping automated endothelial keratoplasty combined with phacoemulsification. Arch Ophthalmol 2008;126:1052-5.
- 971. Prasher P, Muftuoglu O, Bowman RW, et al. Corneal power measurement with a rotating Scheimpflug imaging system after Descemet-stripping automated endothelial keratoplasty. J Cataract Refract Surg 2010;36:1358-64.

- 972. Padmanabhan P, Warade SK, Sejpal K. New endothelial keratoplasty, phacoemulsification, and intraocular lens implantation triple procedure: comparison with conventional triple procedure. J Cataract Refract Surg 2010;36:1142-8.
- 973. Gupta PK, Bordelon A, Vroman DT, et al. Early outcomes of Descemet stripping automated endothelial keratoplasty in pseudophakic eyes with anterior chamber intraocular lenses. Am J Ophthalmol 2011;151:24-8.
- 974. Price MO, Giebel AW, Fairchild KM, Price FW Jr. Descemet's membrane endothelial keratoplasty: prospective multicenter study of visual and refractive outcomes and endothelial survival. Ophthalmology 2009;116:2361-8.
- 975. Sinha R, Sharma N, Vajpayee RB. Visual outcome of cataract surgery with pupillary sphincterotomy in eyes with coexisting corneal opacity. BMC Med 2004;2:10.
- 976. Bhartiya P, Sharma N, Ray M, et al. Trypan blue assisted phacoemulsification in corneal opacities. Br J Ophthalmol 2002;86:857-9.
- 977. Islam MS, Vernon SA, Negi A. Intravitreal triamcinolone will cause posterior subcapsular cataract in most eyes with diabetic maculopathy within 2 years. Eye (Lond) 2007;21:321-3.
- 978. Cekic O, Chang S, Tseng JJ, et al. Cataract progression after intravitreal triamcinolone injection. Am J Ophthalmol 2005;139:993-8.
- 979. Galor A, Margolis R, Brasil OM, et al. Adverse events after intravitreal triamcinolone in patients with and without uveitis. Ophthalmology 2007;114:1912-8.
- 980. Gillies MC, Simpson JM, Billson FA, et al. Safety of an intravitreal injection of triamcinolone: results from a randomized clinical trial. Arch Ophthalmol 2004;122:336-40.
- 981. Thompson JT. Cataract formation and other complications of intravitreal triamcinolone for macular edema. Am J Ophthalmol 2006;141:629-37.
- 982. Beck RW, Edwards AR, Aiello LP, et al, Diabetic Retinopathy Clinical Research Network (DRCR.net). Three-year follow-up of a randomized trial comparing focal/grid photocoagulation and intravitreal triamcinolone for diabetic macular edema. Arch Ophthalmol 2009;127:245-51.
- 983. Chaudhry NA, Cohen KA, Flynn HW Jr, Murray TG. Combined pars plana vitrectomy and lens management in complex vitreoretinal disease. Semin Ophthalmol 2003;18:132-41.
- 984. Villegas VM, Gold AS, Latiff A, et al. Phacovitrectomy. Dev Ophthalmol 2014;54:102-7.
- 985. Seider MI, Michael Lahey J, Fellenbaum PS. Cost of phacovitrectomy versus vitrectomy and sequential phacoemulsification. Retina 2014;34:1112-5.
- 986. Lahey JM, Francis RR, Kearney JJ. Combining phacoemulsification with pars plana vitrectomy in patients with proliferative diabetic retinopathy: a series of 223 cases. Ophthalmology 2003;110:1335-9.
- 987. Lahey JM, Francis RR, Kearney JJ, Cheung M. Combining phacoemulsification and vitrectomy in patients with proliferative diabetic retinopathy. Curr Opin Ophthalmol 2004;15:192-6.
- 988. Dugas B, Ouled-Moussa R, Lafontaine PO, et al. Idiopathic epiretinal macular membrane and cataract extraction: combined versus consecutive surgery. Am J Ophthalmol 2010;149:302-6.
- 989. MacCumber MW, Packo KH, Civantos JM, Greenberg JB. Preservation of anterior capsule during vitrectomy and lensectomy for retinal detachment with proliferative vitreoretinopathy. Ophthalmology 2002;109:329-33.
- 990. Heiligenhaus A, Holtkamp A, Koch J, et al. Combined phacoemulsification and pars plana vitrectomy: clear corneal versus scleral incisions: prospective randomized multicenter study. J Cataract Refract Surg 2003;29:1106-12.
- 991. Hsu SY, Wu WC. Comparison of phacoemulsification and planned extracapsular cataract extraction in combined pars plana vitrectomy and posterior chamber intraocular lens implantation. Ophthalmic Surg Lasers Imaging 2005;36:108-13.
- 992. Wong RW, Kokame GT, Mahmoud TH, et al. Complications associated with clear corneal cataract wounds during vitrectomy. Retina 2010;30:850-5.
- 993. Hainsworth DP, Chen SN, Cox TA, Jaffe GJ. Condensation on polymethylmethacrylate, acrylic polymer, and silicone intraocular lenses after fluid-air exchange in rabbits. Ophthalmology 1996;103:1410-8.
- 994. Demetriades AM, Gottsch JD, Thomsen R, et al. Combined phacoemulsification, intraocular lens implantation, and vitrectomy for eyes with coexisting cataract and vitreoretinal pathology. Am J Ophthalmol 2003;135:291-6.
- 995. Dhital A, Spalton DJ, Goyal S, Werner L. Calcification in hydrophilic intraocular lenses associated with injection of intraocular gas. Am J Ophthalmol 2012;153:1154-60.
- 996. Ehmann D, Garcia R. Investigating a possible cause of the myopic shift after combined cataract extraction, intraocular lens implantation, and vitrectomy for treatment of a macular hole. Can J Ophthalmol 2009;44:594-7.

- 997. Falkner-Radler CI, Benesch T, Binder S. Accuracy of preoperative biometry in vitrectomy combined with cataract surgery for patients with epiretinal membranes and macular holes: results of a prospective controlled clinical trial. J Cataract Refract Surg 2008;34:1754-60.
- 998. Do DV, Gichuhi S, Vedula SS, Hawkins BS. Surgery for post-vitrectomy cataract. Cochrane Database Syst Rev 2013, Issue 12. Art. No.: CD006366. DOI: 10.1002/14651858.CD006366.pub3.
- 999. Do DV, Hawkins B, Gichuhi S, Vedula SS. Surgery for post-vitrectomy cataract. Cochrane Database Syst Rev 2008, Issue 3. Art. No.: CD006366. DOI: 10.1002/14651858.CD006366.pub2.
- 1000. Draeger J, Schwartz R, Kohlhaas M, et al. Pressure-induced change in corneal curvature in patients with refractive surgery and unoperated probands [in German]. Ophthalmologe 1993;90:711-5.
- 1001. Behl S, Kothari K. Rupture of a radial keratotomy incision after 11 years during clear corneal phacoemulsification. J Cataract Refract Surg 2001;27:1132-4.
- 1002. Budak K, Friedman NJ, Koch DD. Dehiscence of a radial keratotomy incision during clear corneal cataract surgery. J Cataract Refract Surg 1998;24:278-80.
- 1003. Freeman M, Kumar V, Ramanathan US, O'Neill E. Dehiscence of radial keratotomy incision during phacoemulsification. Eye 2004;18:101-3.
- 1004. Koch DD, Liu JF, Hyde LL, et al. Refractive complications of cataract surgery after radial keratotomy. Am J Ophthalmol 1989;108:676-82.
- 1005. Seitz B, Langenbucher A. Intraocular lens calculations status after corneal refractive surgery. Curr Opin Ophthalmol 2000;11:35-46.
- 1006. Fang JP, Hill W, Wang L, et al. Advanced intraocular lens power calculations. In: Kohnen T, Koch DD, eds. Essentials in Ophthalmology: Cataract and Refractive Surgery. Berlin, Germany: Springer Berlin Heidelberg; 2006:31-46.
- 1007. Hill WE. Question 9: what IOL should I use in the postrefractive patient? In: Chang DF, ed. Curbside Consultation in Cataract Surgery: 49 Clinical Questions. Thorofare, NJ: SLACK Inc.; 2007:43-7.
- 1008. Yang R, Yeh A, George MR, et al. Comparison of intraocular lens power calculation methods after myopic laser refractive surgery without previous refractive surgery data. J Cataract Refract Surg 2013;39:1327-35.
- 1009. Odenthal MT, Eggink CA, Melles G, et al. Clinical and theoretical results of intraocular lens power calculation for cataract surgery after photorefractive keratectomy for myopia. Arch Ophthalmol 2002;120:431-8.
- Argento C, Cosentino MJ, Badoza D. Intraocular lens power calculation after refractive surgery. J Cataract Refract Surg 2003;29:1346-51.
- 1011. Shammas HJ, Shammas MC, Garabet A, et al. Correcting the corneal power measurements for intraocular lens power calculations after myopic laser in situ keratomileusis. Am J Ophthalmol 2003;136:426-32.
- 1012. Stakheev AA, Balashevich LJ. Corneal power determination after previous corneal refractive surgery for intraocular lens calculation. Cornea 2003;22:214-20.
- 1013. Shammas HJ, Shammas MC, Hill WE. Intraocular lens power calculation in eyes with previous hyperopic laser in situ keratomileusis. J Cataract Refract Surg 2013;39:739-44.
- 1014. Wang L, Booth MA, Koch DD. Comparison of intraocular lens power calculation methods in eyes that have undergone LASIK. Ophthalmology 2004;111:1825-31.
- 1015. Jarade EF, Tabbara KF. New formula for calculating intraocular lens power after laser in situ keratomileusis. J Cataract Refract Surg 2004;30:1711-5.
- 1016. Feiz V, Moshirfar M, Mannis MJ, et al. Nomogram-based intraocular lens power adjustment after myopic photorefractive keratectomy and LASIK: a new approach. Ophthalmology 2005;112:1381-7.
- 1017. Latkany RA, Chokshi AR, Speaker MG, et al. Intraocular lens calculations after refractive surgery. J Cataract Refract Surg 2005;31:562-70.
- 1018. Rosa N, Capasso L, Lanza M, et al. Reliability of a new correcting factor in calculating intraocular lens power after refractive corneal surgery. J Cataract Refract Surg 2005;31:1020-4.
- 1019. Masket S, Masket SE. Simple regression formula for intraocular lens power adjustment in eyes requiring cataract surgery after excimer laser photoablation. J Cataract Refract Surg 2006;32:430-4.
- 1020. Aramberri J. Intraocular lens power calculation after corneal refractive surgery: double-K method. J Cataract Refract Surg 2003;29:2063-8.
- 1021. Canovas C, van der Mooren M, Rosen R, et al. Effect of the equivalent refractive index on intraocular lens power prediction with ray tracing after myopic laser in situ keratomileusis. J Cataract Refract Surg 2015;41:1030-7.
- 1022. Date RC, Yu F, Miller KM. Confirmation and refinement of the Diehl-Miller nomogram for intraocular lens power calculation after laser in situ keratomileusis. J Cataract Refract Surg 2013;39:745-51.

- 1023. Saiki M, Negishi K, Kato N, et al. Modified double-K method for intraocular lens power calculation after excimer laser corneal refractive surgery. J Cataract Refract Surg 2013;39:556-62.
- 1024. Hu YQ, Ye XY, Zhou XL, et al. Practical method to calculate post-LASIK corneal power: the Actual K(a+p) method. Int J Ophthalmol 2010;3:337-41.
- 1025. Wang L, Hill WE, Koch DD. Evaluation of intraocular lens power prediction methods using the American Society of Cataract and Refractive Surgeons Post-Keratorefractive Intraocular Lens Power Calculator. J Cataract Refract Surg 2010;36:1466-73.
- 1026. Sreekantam S, Denniston AK, Murray PI. Survey of expert practice and perceptions of the supporting clinical evidence for the management of uveitis-related cataract and cystoid macular oedema. Ocul Immunol Inflamm 2011;19:353-7.
- 1027. Mehta S, Kempen JH. Cataract surgery in patients with uveitis. Int Ophthalmol Clin 2015;55:133-9.
- 1028. Mousavi S, Moradi M, Khorshidahmad T, Motamedi M. Anti-inflammatory effects of heparin and its derivatives: a systematic review. Adv Pharmacol Sci 2015;2015:507151.
- 1029. Tomlins PJ, Sivaraj RR, Rauz S, et al. Long-term biocompatibility and visual outcomes of a hydrophilic acrylic intraocular lens in patients with uveitis. J Cataract Refract Surg 2014;40:618-25.
- 1030. Foster CS, Stavrou P, Zafirakis P, et al. Intraocular lens removal from [corrected] patients with uveitis. Am J Ophthalmol 1999;128:31-7.
- Bergwerk KL, Miller KM. Outcomes of cataract surgery in monocular patients. J Cataract Refract Surg 2000;26:1631-7.
- 1032. Trotter WL, Miller KM. Outcomes of cataract extraction in functionally monocular patients. Casecontrol study. J Cataract Refract Surg 2002;28:1348-54.
- 1033. Pomberg ML, Miller KM. Functional visual outcomes of cataract extraction in monocular versus binocular patients. Am J Ophthalmol 2004;138:125-32.
- 1034. Rodriguez AA, Olson MD, Miller KM. Bilateral blindness in a monocular patient after cataract surgery. J Cataract Refract Surg 2005;31:438-40.
- 1035. Azen SP, Varma R, Preston-Martin S, et al. Binocular visual acuity summation and inhibition in an ocular epidemiological study: the Los Angeles Latino Eye Study. Invest Ophthalmol Vis Sci 2002;43:1742-8.
- 1036. Cagenello R, Arditi A, Halpern DL. Binocular enhancement of visual acuity. J Opt Soc Am A Opt Image Sci Vis 1993;10:1841-8.
- 1037. Derefeldt G, Lennerstrand G, Lundh B. Age variations in normal human contrast sensitivity. Acta Ophthalmol (Copenh) 1979;57:679-90.
- 1038. Home R. Binocular summation: a study of contrast sensitivity, visual acuity and recognition. Vision Res 1978;18:579-85.
- 1039. Pardhan S. A comparison of binocular summation in young and older patients. Curr Eye Res 1996;15:315-9.
- 1040. Pardhan S. Binocular performance in patients with unilateral cataract using the Regan test: binocular summation and inhibition with low-contrast charts. Eye 1993;7 (Pt 1):59-62.
- 1041. Javitt JC, Steinberg EP, Sharkey P, et al. Cataract surgery in one eye or both. A billion dollar per year issue. Ophthalmology 1995;102:1583-92; discussion 1592-3.
- 1042. Javitt JC, Brenner MH, Curbow B, et al. Outcomes of cataract surgery. Improvement in visual acuity and subjective visual function after surgery in the first, second, and both eyes. Arch Ophthalmol 1993;111:686-91.
- 1043. Lundstrom M, Stenevi U, Thorburn W. Quality of life after first- and second-eye cataract surgery: five-year data collected by the Swedish National Cataract Register. J Cataract Refract Surg 2001;27:1553-9.
- 1044. Castells X, Comas M, Alonso J, et al. In a randomized controlled trial, cataract surgery in both eyes increased benefits compared to surgery in one eye only. J Clin Epidemiol 2006;59:201-7.
- 1045. Avakian A, Temporini ER, Kara-Jose N. Second eye cataract surgery: perceptions of a population assisted at a university hospital. Clinics (Sao Paulo) 2005;60:401-6.
- 1046. Taylor RH, Misson GP, Moseley MJ. Visual acuity and contrast sensitivity in cataract: summation and inhibition of visual performance. Eye 1991;5 (Pt 6):704-7.
- 1047. Castells X, Alonso J, Ribo C, et al. Comparison of the results of first and second cataract eye surgery. Ophthalmology 1999;106:676-82.
- 1048. Laidlaw A, Harrad R. Can second eye cataract extraction be justified? Eye 1993;7 (Pt 5):680-6.
- 1049. Talbot EM, Perkins A. The benefit of second eye cataract surgery. Eye 1998;12 (Pt 6):983-9.
- 1050. Laidlaw DA, Harrad RA, Hopper CD, et al. Randomised trial of effectiveness of second eye cataract surgery. Lancet 1998;352:925-9.

- 1051. Frampton G, Harris P, Cooper K, et al. The clinical effectiveness and cost-effectiveness of second-eye cataract surgery: a systematic review and economic evaluation. Health Technol Assess 2014;18:1-205, v-vi.
- 1052. Elliott DB, Patla A, Bullimore MA. Improvements in clinical and functional vision and perceived visual disability after first and second eye cataract surgery. Br J Ophthalmol 1997;81:889-95.
- 1053. Percival SP, Vyas AV, Setty SS, Manvikar S. The influence of implant design on accuracy of postoperative refraction. Eye (Lond) 2002;16:309-15.
- 1054. Covert DJ, Henry CR, Koenig SB. Intraocular lens power selection in the second eye of patients undergoing bilateral, sequential cataract extraction. Ophthalmology 2010;117:49-54.
- 1055. Johansson BA, Lundh BL. Bilateral same day phacoemulsification: 220 cases retrospectively reviewed. Br J Ophthalmol 2003;87:285-90.
- 1056. Arshinoff SA, Strube YN, Yagev R. Simultaneous bilateral cataract surgery. J Cataract Refract Surg 2003;29:1281-91.
- 1057. Sarikkola AU, Kontkanen M, Kivela T, Laatikainen L. Simultaneous bilateral cataract surgery: a retrospective survey. J Cataract Refract Surg 2004;30:1335-41.
- 1058. Sharma TK, Worstmann T. Simultaneous bilateral cataract extraction. J Cataract Refract Surg 2001;27:741-4.
- 1059. Smith GT, Liu CS. Is it time for a new attitude to "simultaneous" bilateral cataract surgery? Br J Ophthalmol 2001;85:1489-96.
- 1060. Totan Y, Bayramlar H, Cekic O, et al. Bilateral cataract surgery in adult and pediatric patients in a single session. J Cataract Refract Surg 2000;26:1008-11.
- 1061. Kontkanen M, Kaipiainen S. Simultaneous bilateral cataract extraction: a positive view. J Cataract Refract Surg 2002;28:2060-1.
- 1062. Lundstrom M, Albrecht S, Nilsson M, Astrom B. Benefit to patients of bilateral same-day cataract extraction: Randomized clinical study. J Cataract Refract Surg 2006;32:826-30.
- 1063. Kashkouli MB, Salimi S, Aghaee H, Naseripour M. Bilateral *Pseudomonas aeruginosa* endophthalmitis following bilateral simultaneous cataract surgery. Indian J Ophthalmol 2007;55:374-5.
- 1064. Chung JK, Park SH, Lee WJ, Lee SJ. Bilateral cataract surgery: a controlled clinical trial. Jpn J Ophthalmol 2009;53:107-13.
- 1065. Lundstrom M, Albrecht S, Roos P. Immediate versus delayed sequential bilateral cataract surgery: an analysis of costs and patient value. Acta Ophthalmol 2009;87:33-8.
- 1066. Nassiri N, Sadeghi Yarandi SH, Rahnavardi M. Immediate vs delayed sequential cataract surgery: a comparative study. Eye (Lond) 2009;23:89-95.
- 1067. Arshinoff SA, Chen SH. Simultaneous bilateral cataract surgery: Financial differences among nations and jurisdictions. J Cataract Refract Surg 2006;32:1355-60.
- 1068. Arshinoff SA, Odorcic S. Same-day sequential cataract surgery. Curr Opin Ophthalmol 2009;20:3-12.
- 1069. Malvankar-Mehta MS, Filek R, Iqbal M, et al. Immediately sequential bilateral cataract surgery: a cost-effective procedure. Can J Ophthalmol 2013;48:482-8.
- 1070. Leivo T, Sarikkola AU, Uusitalo RJ, et al. Simultaneous bilateral cataract surgery: economic analysis; Helsinki Simultaneous Bilateral Cataract Surgery Study Report 2. J Cataract Refract Surg 2011;37:1003-8.
- 1071. Grzybowski A, Krzyzanowska-Berkowska P. Immediate sequential bilateral cataract surgery: who might benefit from the procedure? J Cataract Refract Surg 2013;39:1119-20.
- 1072. Serrano-Aguilar P, Ramallo-Farina Y, Cabrera-Hernandez JM, et al. Immediately sequential versus delayed sequential bilateral cataract surgery: safety and effectiveness. J Cataract Refract Surg 2012;38:1734-42.
- 1073. Arshinoff SA, Bastianelli PA. Incidence of postoperative endophthalmitis after immediate sequential bilateral cataract surgery. J Cataract Refract Surg 2011;37:2105-14.
- 1074. Ozdek SC, Onaran Z, Gurelik G, et al. Bilateral endophthalmitis after simultaneous bilateral cataract surgery. J Cataract Refract Surg 2005;31:1261-2.
- 1075. Puvanachandra N, Humphry RC. Bilateral endophthalmitis after bilateral sequential phacoemulsification. J Cataract Refract Surg 2008;34:1036-7.
- 1076. Sarikkola AU, Uusitalo RJ, Hellstedt T, et al. Simultaneous bilateral versus sequential bilateral cataract surgery: Helsinki Simultaneous Bilateral Cataract Surgery Study Report 1. J Cataract Refract Surg 2011;37:992-1002.
- 1077. Comprehensive Guidelines for the Co-Management of Ophthalmic Postoperative Care. San Francisco, CA: American Academy of Ophthalmology; 2016. Available at <u>www.aao.org/ethics-detail/guidelines-</u> <u>comanagement-postoperative-care</u>. Accessed September 7, 2016.

- 1078. American Academy of Ophthalmology. Code of Ethics; rules of ethics #7 and #8. Available at: www.aao.org/ethics-detail/code-of-ethics. Accessed May 27, 2016.
- 1079. Lesin M, Domazet Bugarin J, Puljak L. Factors associated with postoperative pain and analgesic consumption in ophthalmic surgery: a systematic review. Surv Ophthalmol 2015;60:196-203.
- 1080. Lin JC, Rapuano CJ, Laibson PR, et al. Corneal melting associated with use of topical nonsteroidal anti-inflammatory drugs after ocular surgery. Arch Ophthalmol 2000;118:1129-32.
- 1081. Congdon NG, Schein OD, von Kulajta P, et al. Corneal complications associated with topical ophthalmic use of nonsteroidal antiinflammatory drugs. J Cataract Refract Surg 2001;27:622-31.
- 1082. Guidera AC, Luchs JI, Udell IJ. Keratitis, ulceration, and perforation associated with topical nonsteroidal anti-inflammatory drugs. Ophthalmology 2001;108:936-44.
- 1083. Tinley CG, Frost A, Hakin KN, et al. Is visual outcome compromised when next day review is omitted after phacoemulsification surgery? A randomised control trial. Br J Ophthalmol 2003;87:1350-5.
- 1084. Alwitry A, Rotchford A, Gardner I. First day review after uncomplicated phacoemulsification: is it necessary? Eur J Ophthalmol 2006;16:554-9.
- 1085. Saeed A, Guerin M, Khan I, et al. Deferral of first review after uneventful phacoemulsification cataract surgery until 2 weeks: randomized controlled study. J Cataract Refract Surg 2007;33:1591-6.
- 1086. Tan JH, Newman DK, Klunker C, et al. Phacoemulsification cataract surgery: is routine review necessary on the first post-operative day? Eye 2000;14 (Pt 1):53-5.
- 1087. Masket S, Tennen DG. Astigmatic stabilization of 3.0 mm temporal clear corneal cataract incisions. J Cataract Refract Surg 1996;22:1451-5.
- 1088. Minassian DC, Rosen P, Dart JK, et al. Extracapsular cataract extraction compared with small incision surgery by phacoemulsification: a randomised trial. Br J Ophthalmol 2001;85:822-9.
- 1089. Apple DJ, Solomon KD, Tetz MR, et al. Posterior capsule opacification. Surv Ophthalmol 1992;37:73-116.
- 1090. Marcantonio JM, Vrensen GF. Cell biology of posterior capsular opacification. Eye (Lond) 1999;13 (Pt 3b):484-8.
- 1091. Schaumberg DA, Dana MR, Christen WG, Glynn RJ. A systematic overview of the incidence of posterior capsule opacification. Ophthalmology 1998;105:1213-21.
- 1092. Baratz KH, Cook BE, Hodge DO. Probability of Nd:YAG laser capsulotomy after cataract surgery in Olmsted County, Minnesota. Am J Ophthalmol 2001;131:161-6.
- 1093. Cataract Management Guideline Panel. Cataract in Adults: Management of Functional Impairment. Clinical Practice Guideline, Number 4. Rockville, MD: USDHHS, AHCPR Publ. No. (PHS) 93-0542; 1993.
- 1094. Kucuksumer Y, Bayraktar S, Sahin S, Yilmaz OF. Posterior capsule opacification 3 years after implantation of an AcrySof and a MemoryLens in fellow eyes. J Cataract Refract Surg 2000;26:1176-82.
- 1095. Sacu S, Menapace R, Findl O, et al. Long-term efficacy of adding a sharp posterior optic edge to a three-piece silicone intraocular lens on capsule opacification: five-year results of a randomized study. Am J Ophthalmol 2005;139:696-703.
- 1096. Vasavada AR, Raj SM, Shah A, et al. Comparison of posterior capsule opacification with hydrophobic acrylic and hydrophilic acrylic intraocular lenses. J Cataract Refract Surg 2011;37:1050-9.
- 1097. Iwase T, Nishi Y, Oveson BC, Jo YJ. Hydrophobic versus double-square-edged hydrophilic foldable acrylic intraocular lens: effect on posterior capsule opacification. J Cataract Refract Surg 2011;37:1060-8.
- 1098. Lundqvist B, Monestam E. Ten-year longitudinal visual function and Nd: YAG laser capsulotomy rates in patients less than 65 years at cataract surgery. Am J Ophthalmol 2010;149:238-44.
- 1099. Findl O, Buehl W, Bauer P, Sycha T. Interventions for preventing posterior capsule opacification. Cochrane Database Syst Rev 2010, Issue 2, Art. No.: CD003738. DOI: 10.1002/14651858.CD003738.pub3.
- 1100. Li Y, Wang J, Chen Z, Tang X. Effect of hydrophobic acrylic versus hydrophilic acrylic intraocular lens on posterior capsule opacification: meta-analysis. PLoS One 2013;8:e77864.
- 1101. Rønbeck M, Kugelberg M. Posterior capsule opacification with 3 intraocular lenses: 12-year prospective study. J Cataract Refract Surg 2014;40:70-6.
- 1102. Daynes T, Spencer TS, Doan K, et al. Three-year clinical comparison of 3-piece AcrySof and SI-40 silicone intraocular lenses. J Cataract Refract Surg 2002;28:1124-9.
- 1103. Wejde G, Kugelberg M, Zetterstrom C. Position of anterior capsulorhexis and posterior capsule opacification. Acta Ophthalmol Scand 2004;82:531-4.

- 1104. Praveen MR, Shah GD, Vasavada AR, Dave KH. The effect of single-piece hydrophobic acrylic intraocular lenses on the development of posterior capsule opacification. Am J Ophthalmol 2015;160:470-8.
- 1105. Sacu S, Menapace R, Buehl W, et al. Effect of intraocular lens optic edge design and material on fibrotic capsule opacification and capsulorhexis contraction. J Cataract Refract Surg 2004;30:1875-82.
- 1106. Sacu S, Menapace R, Wirtitsch M, et al. Effect of anterior capsule polishing on fibrotic capsule opacification: three-year results. J Cataract Refract Surg 2004;30:2322-7.
- 1107. Baile R, Sahasrabuddhe M, Nadkarni S, et al. Effect of anterior capsular polishing on the rate of posterior capsule opacification: A retrospective analytical study. Saudi J Ophthalmol 2012;26:101-4.
- 1108. Georgopoulos M, Menapace R, Findl O, et al. Posterior continuous curvilinear capsulorhexis with hydrogel and silicone intraocular lens implantation: development of capsulorhexis size and capsule opacification. J Cataract Refract Surg 2001;27:825-32.
- 1109. Kahraman G, Amon M, Ferdinaro C, et al. Intraindividual comparative analysis of capsule opacification after implantation of 2 single-piece hydrophobic acrylic intraocular lenses models: Three-year follow-up. J Cataract Refract Surg 2015;41:990-6.
- 1110. Tan JC, Spalton DJ, Arden GB. The effect of neodymium: YAG capsulotomy on contrast sensitivity and the evaluation of methods for its assessment. Ophthalmology 1999;106:703-9.
- 1111. Ge J, Wand M, Chiang R, et al. Long-term effect of Nd:YAG laser posterior capsulotomy on intraocular pressure. Arch Ophthalmol 2000;118:1334-7.
- 1112. Steinert RF, Puliafito CA, Kumar SR, et al. Cystoid macular edema, retinal detachment, and glaucoma after Nd:YAG laser posterior capsulotomy. Am J Ophthalmol 1991;112:373-80.
- 1113. Winslow RL, Taylor BC. Retinal complications following YAG laser capsulotomy. Ophthalmology 1985;92:785-9.
- 1114. Blacharski PA, Newsome DA. Bilateral macular holes after Nd:YAG laser posterior capsulotomy. Am J Ophthalmol 1988;105:417-8.
- 1115. Carlson AN, Koch DD. Endophthalmitis following Nd:YAG laser posterior capsulotomy. Ophthalmic Surg 1988;19:168-70.
- 1116. Ranta P, Tommila P, Kivela T. Retinal breaks and detachment after neodymium: YAG laser posterior capsulotomy: five-year incidence in a prospective cohort. J Cataract Refract Surg 2004;30:58-66.
- 1117. Koch DD, Liu JF, Gill EP, Parke DW 2nd. Axial myopia increases the risk of retinal complications after neodymium-YAG laser posterior capsulotomy. Arch Ophthalmol 1989;107:986-90.
- 1118. Jahn CE, Richter J, Jahn AH, et al. Pseudophakic retinal detachment after uneventful phacoemulsification and subsequent neodymium: YAG capsulotomy for capsule opacification. J Cataract Refract Surg 2003;29:925-9.
- 1119. Tuft SJ, Minassian D, Sullivan P. Risk factors for retinal detachment after cataract surgery: a casecontrol study. Ophthalmology 2006;113:650-6.
- 1120. Slomovic AR, Parrish RK 2nd. Acute elevations of intraocular pressure following Nd:YAG laser posterior capsulotomy. Ophthalmology 1985;92:973-6.
- 1121. Awan AA, Kazmi SH, Bukhari SA. Intraocular pressure changes after Nd-YAG laser capsulotomy. J Ayub Med Coll Abbottabad 2001;13:3-4.
- 1122. Seong GJ, Lee YG, Lee JH, et al. Effect of 0.2% brimonidine in preventing intraocular pressure elevation after Nd:YAG laser posterior capsulotomy. Ophthalmic Surg Lasers 2000;31:308-14.
- 1123. Rakofsky S, Koch DD, Faulkner JD, et al. Levobunolol 0.5% and timolol 0.5% to prevent intraocular pressure elevation after neodymium:YAG laser posterior capsulotomy. J Cataract Refract Surg 1997;23:1075-80.
- 1124. Ladas ID, Baltatzis S, Panagiotidis D, et al. Topical 2.0% dorzolamide vs oral acetazolamide for prevention of intraocular pressure rise after neodymium:YAG laser posterior capsulotomy. Arch Ophthalmol 1997;115:1241-4.
- 1125. Ladas ID, Pavlopoulos GP, Kokolakis SN, Theodossiadis GP. Prophylactic use of acetazolamide to prevent intraocular pressure elevation following Nd-YAG laser posterior capsulotomy. Br J Ophthalmol 1993;77:136-8.
- 1126. Silverstone DE, Brint SF, Olander KW, et al. Prophylactic use of apraclonidine for intraocular pressure increase after Nd:YAG capsulotomies. Am J Ophthalmol 1992;113:401-5.
- 1127. Barnes EA, Murdoch IE, Subramaniam S, et al. Neodymium:yttrium-aluminum-garnet capsulotomy and intraocular pressure in pseudophakic patients with glaucoma. Ophthalmology 2004;111:1393-7.
- 1128. Benson WE, Grand MG, Okun E. Aphakic retinal detachment. Management of the fellow eye. Arch Ophthalmol 1975;93:245-9.

- 1129. American Academy of Ophthalmology. Policy Statement. Laser Surgery. San Francisco, CA: American Academy of Ophthalmology; 2015. Available at: <u>www.aao.org/guidelines-</u> <u>browse?filter=clinicalstatement</u>. Accessed May 27, 2016.
- 1130. Fedorowicz Z, Lawrence D, Gutierrez P, van Zuuren EJ. Day care versus in-patient surgery for agerelated cataract. Cochrane Database Syst Rev 2011, Issue 7, Art. No.: CD004242. DOI: 10.1002/14651858.CD004242.pub4.
- 1131. Lawrence D, Fedorowicz Z, van Zuuren EJ. Day care versus in-patient surgery for age-related cataract. Cochrane Database Syst Rev 2015, Issue 11. Art. No.: CD004242. DOI: 10.1002/14651858.CD004242.pub5.
- 1132. American Academy of Ophthalmology Vision Rehabilitation Committee. Preferred Practice Pattern[®] Guidelines. Vision Rehabilitation for Adults. San Francisco, CA: American Academy of Ophthalmology; 2012. Available at: <u>www.aao.org/ppp</u>.
- 1133. Schein OD, Cassard SD, Tielsch JM, Gower EW. Cataract surgery among Medicare beneficiaries. Ophthalmic Epidemiol 2012;19:257-64.
- 1134. Williams A, Sloan FA, Lee PP. Longitudinal rates of cataract surgery. Arch Ophthalmol 2006;124:1308-14.
- 1135. Klein BE, Howard KP, Lee KE, Klein R. Changing incidence of lens extraction over 20 years: the Beaver Dam Eye Study. Ophthalmology 2014;121:5-9.
- 1136. Javitt JC, Kendix M, Tielsch JM, et al. Geographic variation in utilization of cataract surgery. Med Care 1995;33:90-105.
- 1137. French DD, Margo CE, Campbell RR. Cataract surgery among veterans 65 years of age and older: analysis of national veterans health administration databases. Am J Med Qual 2010;25:143-8.
- 1138. Tobacman JK, Lee P, Zimmerman B, et al. Assessment of appropriateness of cataract surgery at ten academic medical centers in 1990. Ophthalmology 1996;103:207-15.
- 1139. Leape LL, Hilborne LH, Park RE, et al. The appropriateness of use of coronary artery bypass graft surgery in New York State. JAMA 1993;269:753-60.
- 1140. Halm EA, Chassin MR, Tuhrim S, et al. Revisiting the appropriateness of carotid endarterectomy. Stroke 2003;34:1464-71.
- 1141. Chassin MR, Brook RH, Park RE, et al. Variations in the use of medical and surgical services by the Medicare population. N Engl J Med 1986;314:285-90.
- 1142. Tobacman JK, Zimmerman B, Lee P, et al. Visual acuity following cataract surgeries in relation to preoperative appropriateness ratings. Med Decis Making 2003;23:122-30.
- 1143. Quintana JM, Escobar A, Bilbao A, et al. Validity of newly developed appropriateness criteria for cataract surgery. Ophthalmology 2009;116:409-17.
- 1144. Medicare Payment Advisory Commission. Report to the Congress: Medicare payment policy. March 2011:104. Available at: <u>http://medpac.gov/docs/default-source/reports/Mar11_EntireReport.pdf?sfvrsn=0</u>. Accessed May 27, 2016.
- 1145. Cullen KA, Hall MJ, Golosinskiy A. Ambulatory surgery in the United States, 2006. Revised 2009. National Health Statistics Reports; No. 11. Hyattsville, MD: National Center for Health Statistics; 2009. Publication (PHS) 2009-1250. Available at: <u>www.cdc.gov/nchs/data/nhsr/nhsr011.pdf</u>. Accessed May 27, 2016.
- 1146. Centers for Medicare and Medicaid Services. Medicare leading Part B procedure codes based on allowed charges: calendar year 2009. Table V.6a. Available at: <u>www.cms.hhs.gov/datacompendium/</u>. Accessed May 27, 2016.
- 1147. Kobelt G, Lundstrom M, Stenevi U. Cost-effectiveness of cataract surgery. Method to assess costeffectiveness using registry data. J Cataract Refract Surg 2002;28:1742-9.
- 1148. Busbee BG, Brown MM, Brown GC, Sharma S. Incremental cost-effectiveness of initial cataract surgery. Ophthalmology 2002;109:606-12; discussion 612-3.
- 1149. Busbee BG, Brown MM, Brown GC, Sharma S. CME review: a cost-utility analysis of laser photocoagulation for extrafoveal choroidal neovascularization. Retina 2003;23:279-87; quiz 443-4.
- 1150. Brown GC, Brown MM, Menezes A, et al. Cataract surgery cost utility revisited in 2012: a new economic paradigm. Ophthalmology 2013;120:2367-76.
- 1151. Cutler DM, McClellan M. Is technological change in medicine worth it? Health Aff (Millwood) 2001;20:11-29.
- 1152. Pineda R, Denevich S, Lee WC, et al. Economic evaluation of toric intraocular lens: a short- and long-term decision analytic model. Arch Ophthalmol 2010;128:834-40.
- 1153. Hansen MS, Hardten DR. Financially efficient cataract surgery in today's healthcare environment. Curr Opin Ophthalmol 2015;26:61-5.

- 1154. Hiratsuka Y, Yamada M, Murakami A, et al. Eye Care Comparative Effectiveness Research Team (ECCERT). Cost-effectiveness of cataract surgery in Japan. Jpn J Ophthalmol 2011;55:333-42.
- 1155. Jensen MK, Nahoopii R, Johnson B. Using multidose eyedrops in a health care setting: a policy and procedural approach to safe and effective treatment of patients. JAMA Ophthalmol 2014;132:1476-9.
- 1156. Hankinson SE, Stampfer MJ, Seddon JM, et al. Nutrient intake and cataract extraction in women: a prospective study. BMJ 1992;305:335-9.
- 1157. Seddon JM, Christen WG, Manson JE, et al. The use of vitamin supplements and the risk of cataract among US male physicians. Am J Public Health 1994;84:788-92.
- 1158. Jacques PF, Taylor A, Hankinson SE, et al. Long-term vitamin C supplement use and prevalence of early age-related lens opacities. Am J Clin Nutr 1997;66:911-6.
- 1159. Yoshida M, Takashima Y, Inoue M, et al. Prospective study showing that dietary vitamin C reduced the risk of age-related cataracts in a middle-aged Japanese population. Eur J Nutr 2007;46:118-24.
- 1160. Teikari JM, Rautalahti M, Haukka J, et al. Incidence of cataract operations in Finnish male smokers unaffected by alpha tocopherol or beta carotene supplements. J Epidemiol Community Health 1998;52:468-72.
- 1161. Christen WG, Manson JE, Glynn RJ, et al. A randomized trial of beta carotene and age-related cataract in US physicians. Arch Ophthalmol 2003;121:372-8.
- 1162. Christen W, Glynn R, Sperduto R, et al. Age-related cataract in a randomized trial of beta-carotene in women. Ophthalmic Epidemiol 2004;11:401-12.
- 1163. Sperduto RD, Hu TS, Milton RC, et al. The Linxian cataract studies. Two nutrition intervention trials. Arch Ophthalmol 1993;111:1246-53.
- 1164. Hodge W, Barnes D, Schachter H, et al. Effects of Omega-3 Fatty Acids on Eye Health. Evidence Report/Technology Assessment No. 117 (Prepared by University of Ottawa Evidence-based Practice Center under Contract No. 290-02-0021.) AHRQ Publication No. 05-E008-2. Rockville, MD: Agency for Healthcare Research and Quality. July 2005. Available at: <u>http://archive.ahrq.gov/clinic/tp/o3eyetp.htm</u>. Accessed August 3, 2016.
- 1165. Christen WG, Glynn RJ, Sesso HD, et al. Age-related cataract in a randomized trial of vitamins E and C in men. Arch Ophthalmol 2010;128:1397-405.
- 1166. Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene for age-related cataract and vision loss: AREDS report no. 9. Arch Ophthalmol 2001;119:1439-52.
- 1167. Gritz DC, Srinivasan M, Smith SD, et al. The Antioxidants in Prevention of Cataracts Study: effects of antioxidant supplements on cataract progression in South India. Br J Ophthalmol 2006;90:847-51.
- 1168. Chylack LT Jr, Brown NP, Bron A, et al. The Roche European American Cataract Trial (REACT): a randomized clinical trial to investigate the efficacy of an oral antioxidant micronutrient mixture to slow progression of age-related cataract. Ophthalmic Epidemiol 2002;9:49-80.
- 1169. McNeil JJ, Robman L, Tikellis G, et al. Vitamin E supplementation and cataract: randomized controlled trial. Ophthalmology 2004;111:75-84.
- 1170. Christen WG, Glynn RJ, Chew EY, Buring JE. Vitamin E and age-related cataract in a randomized trial of women. Ophthalmology 2008;115:822-9.
- 1171. Teikari JM, Virtamo J, Rautalahti M, et al. Long-term supplementation with alpha-tocopherol and beta-carotene and age-related cataract. Acta Ophthalmol Scand 1997;75:634-40.
- 1172. Brown L, Rimm EB, Seddon JM, et al. A prospective study of carotenoid intake and risk of cataract extraction in US men. Am J Clin Nutr 1999;70:517-24.
- 1173. Chasan-Taber L, Willett WC, Seddon JM, et al. A prospective study of vitamin supplement intake and cataract extraction among U.S. women. Epidemiology 1999;10:679-84.